Extra lemmas about intervals #
This file contains lemmas about intervals that cannot be included into Order.Interval.Set.Basic
because this would create an import
cycle. Namely, lemmas in this file can use definitions
from Data.Set.Lattice
, including Disjoint
.
We consider various intersections and unions of half infinite intervals.
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
theorem
Set.Ioo_disjoint_Ioo
{α : Type v}
[LinearOrder α]
{a₁ : α}
{a₂ : α}
{b₁ : α}
{b₂ : α}
[DenselyOrdered α]
:
theorem
Set.eq_of_Ico_disjoint
{α : Type v}
[LinearOrder α]
{x₁ : α}
{x₂ : α}
{y₁ : α}
{y₂ : α}
(h : Disjoint (Set.Ico x₁ x₂) (Set.Ico y₁ y₂))
(hx : x₁ < x₂)
(h2 : x₂ ∈ Set.Ico y₁ y₂)
:
y₁ = x₂
If two half-open intervals are disjoint and the endpoint of one lies in the other, then it must be equal to the endpoint of the other.
@[simp]
theorem
Set.iUnion_Ico_eq_Iio_self_iff
{ι : Sort u}
{α : Type v}
[LinearOrder α]
{f : ι → α}
{a : α}
:
theorem
IsGLB.iUnion_Ioi_eq
{ι : Sort u}
{α : Type v}
[LinearOrder α]
{a : α}
{f : ι → α}
(h : IsGLB (Set.range f) a)
:
theorem
IsLUB.iUnion_Iio_eq
{ι : Sort u}
{α : Type v}
[LinearOrder α]
{a : α}
{f : ι → α}
(h : IsLUB (Set.range f) a)
:
theorem
IsGLB.biUnion_Ici_eq_Ioi
{α : Type v}
[LinearOrder α]
{s : Set α}
{a : α}
(a_glb : IsGLB s a)
(a_not_mem : a ∉ s)
:
theorem
IsGLB.biUnion_Ici_eq_Ici
{α : Type v}
[LinearOrder α]
{s : Set α}
{a : α}
(a_glb : IsGLB s a)
(a_mem : a ∈ s)
:
theorem
IsLUB.biUnion_Iic_eq_Iio
{α : Type v}
[LinearOrder α]
{s : Set α}
{a : α}
(a_lub : IsLUB s a)
(a_not_mem : a ∉ s)
:
theorem
IsLUB.biUnion_Iic_eq_Iic
{α : Type v}
[LinearOrder α]
{s : Set α}
{a : α}
(a_lub : IsLUB s a)
(a_mem : a ∈ s)
:
theorem
iUnion_Ici_eq_Ioi_iInf
{ι : Sort u}
{R : Type u_1}
[CompleteLinearOrder R]
{f : ι → R}
(no_least_elem : ⨅ (i : ι), f i ∉ Set.range f)
:
theorem
iUnion_Iic_eq_Iio_iSup
{ι : Sort u}
{R : Type u_1}
[CompleteLinearOrder R]
{f : ι → R}
(no_greatest_elem : ⨆ (i : ι), f i ∉ Set.range f)
:
theorem
iUnion_Ici_eq_Ici_iInf
{ι : Sort u}
{R : Type u_1}
[CompleteLinearOrder R]
{f : ι → R}
(has_least_elem : ⨅ (i : ι), f i ∈ Set.range f)
:
theorem
iUnion_Iic_eq_Iic_iSup
{ι : Sort u}
{R : Type u_1}
[CompleteLinearOrder R]
{f : ι → R}
(has_greatest_elem : ⨆ (i : ι), f i ∈ Set.range f)
:
theorem
iUnion_Iic_of_not_bddAbove_range
{ι : Sort u}
{α : Type v}
[LinearOrder α]
{f : ι → α}
(hf : ¬BddAbove (Set.range f))
: