Documentation

Mathlib.Order.Filter.AtTopBot.Ring

Convergence to ±infinity in ordered rings #

theorem Filter.Tendsto.atTop_mul_atTop {α : Type u_1} {β : Type u_2} [OrderedSemiring α] {l : Filter β} {f : βα} {g : βα} (hf : Filter.Tendsto f l Filter.atTop) (hg : Filter.Tendsto g l Filter.atTop) :
Filter.Tendsto (fun (x : β) => f x * g x) l Filter.atTop
theorem Filter.tendsto_mul_self_atTop {α : Type u_1} [OrderedSemiring α] :
Filter.Tendsto (fun (x : α) => x * x) Filter.atTop Filter.atTop
theorem Filter.tendsto_pow_atTop {α : Type u_1} [OrderedSemiring α] {n : } (hn : n 0) :
Filter.Tendsto (fun (x : α) => x ^ n) Filter.atTop Filter.atTop

The monomial function x^n tends to +∞ at +∞ for any positive natural n. A version for positive real powers exists as tendsto_rpow_atTop.

theorem Filter.zero_pow_eventuallyEq {α : Type u_1} [MonoidWithZero α] :
(fun (n : ) => 0 ^ n) =ᶠ[Filter.atTop] fun (x : ) => 0
theorem Filter.Tendsto.atTop_mul_atBot {α : Type u_1} {β : Type u_2} [OrderedRing α] {l : Filter β} {f : βα} {g : βα} (hf : Filter.Tendsto f l Filter.atTop) (hg : Filter.Tendsto g l Filter.atBot) :
Filter.Tendsto (fun (x : β) => f x * g x) l Filter.atBot
theorem Filter.Tendsto.atBot_mul_atTop {α : Type u_1} {β : Type u_2} [OrderedRing α] {l : Filter β} {f : βα} {g : βα} (hf : Filter.Tendsto f l Filter.atBot) (hg : Filter.Tendsto g l Filter.atTop) :
Filter.Tendsto (fun (x : β) => f x * g x) l Filter.atBot
theorem Filter.Tendsto.atBot_mul_atBot {α : Type u_1} {β : Type u_2} [OrderedRing α] {l : Filter β} {f : βα} {g : βα} (hf : Filter.Tendsto f l Filter.atBot) (hg : Filter.Tendsto g l Filter.atBot) :
Filter.Tendsto (fun (x : β) => f x * g x) l Filter.atTop
theorem Filter.Tendsto.atTop_of_const_mul {α : Type u_1} {β : Type u_2} [LinearOrderedSemiring α] {l : Filter β} {f : βα} {c : α} (hc : 0 < c) (hf : Filter.Tendsto (fun (x : β) => c * f x) l Filter.atTop) :
Filter.Tendsto f l Filter.atTop
theorem Filter.Tendsto.atTop_of_mul_const {α : Type u_1} {β : Type u_2} [LinearOrderedSemiring α] {l : Filter β} {f : βα} {c : α} (hc : 0 < c) (hf : Filter.Tendsto (fun (x : β) => f x * c) l Filter.atTop) :
Filter.Tendsto f l Filter.atTop
@[simp]
theorem Filter.tendsto_pow_atTop_iff {α : Type u_1} [LinearOrderedSemiring α] {n : } :
Filter.Tendsto (fun (x : α) => x ^ n) Filter.atTop Filter.atTop n 0
theorem Filter.not_tendsto_pow_atTop_atBot {α : Type u_1} [LinearOrderedRing α] {n : } :
¬Filter.Tendsto (fun (x : α) => x ^ n) Filter.atTop Filter.atBot
theorem exists_lt_mul_self {R : Type u_3} [LinearOrderedSemiring R] (a : R) :
x0, a < x * x
theorem exists_le_mul_self {R : Type u_3} [LinearOrderedSemiring R] (a : R) :
x0, a x * x