Documentation

Mathlib.Order.Filter.AtTopBot.Monoid

Convergence to ±infinity in ordered commutative monoids #

theorem Filter.tendsto_atTop_add_nonneg_left' {α : Type u_1} {β : Type u_2} [OrderedAddCommMonoid β] {l : Filter α} {f : αβ} {g : αβ} (hf : ∀ᶠ (x : α) in l, 0 f x) (hg : Filter.Tendsto g l Filter.atTop) :
Filter.Tendsto (fun (x : α) => f x + g x) l Filter.atTop
theorem Filter.tendsto_atBot_add_nonpos_left' {α : Type u_1} {β : Type u_2} [OrderedAddCommMonoid β] {l : Filter α} {f : αβ} {g : αβ} (hf : ∀ᶠ (x : α) in l, f x 0) (hg : Filter.Tendsto g l Filter.atBot) :
Filter.Tendsto (fun (x : α) => f x + g x) l Filter.atBot
theorem Filter.tendsto_atTop_add_nonneg_left {α : Type u_1} {β : Type u_2} [OrderedAddCommMonoid β] {l : Filter α} {f : αβ} {g : αβ} (hf : ∀ (x : α), 0 f x) (hg : Filter.Tendsto g l Filter.atTop) :
Filter.Tendsto (fun (x : α) => f x + g x) l Filter.atTop
theorem Filter.tendsto_atBot_add_nonpos_left {α : Type u_1} {β : Type u_2} [OrderedAddCommMonoid β] {l : Filter α} {f : αβ} {g : αβ} (hf : ∀ (x : α), f x 0) (hg : Filter.Tendsto g l Filter.atBot) :
Filter.Tendsto (fun (x : α) => f x + g x) l Filter.atBot
theorem Filter.tendsto_atTop_add_nonneg_right' {α : Type u_1} {β : Type u_2} [OrderedAddCommMonoid β] {l : Filter α} {f : αβ} {g : αβ} (hf : Filter.Tendsto f l Filter.atTop) (hg : ∀ᶠ (x : α) in l, 0 g x) :
Filter.Tendsto (fun (x : α) => f x + g x) l Filter.atTop
theorem Filter.tendsto_atBot_add_nonpos_right' {α : Type u_1} {β : Type u_2} [OrderedAddCommMonoid β] {l : Filter α} {f : αβ} {g : αβ} (hf : Filter.Tendsto f l Filter.atBot) (hg : ∀ᶠ (x : α) in l, g x 0) :
Filter.Tendsto (fun (x : α) => f x + g x) l Filter.atBot
theorem Filter.tendsto_atTop_add_nonneg_right {α : Type u_1} {β : Type u_2} [OrderedAddCommMonoid β] {l : Filter α} {f : αβ} {g : αβ} (hf : Filter.Tendsto f l Filter.atTop) (hg : ∀ (x : α), 0 g x) :
Filter.Tendsto (fun (x : α) => f x + g x) l Filter.atTop
theorem Filter.tendsto_atBot_add_nonpos_right {α : Type u_1} {β : Type u_2} [OrderedAddCommMonoid β] {l : Filter α} {f : αβ} {g : αβ} (hf : Filter.Tendsto f l Filter.atBot) (hg : ∀ (x : α), g x 0) :
Filter.Tendsto (fun (x : α) => f x + g x) l Filter.atBot
theorem Filter.tendsto_atTop_add {α : Type u_1} {β : Type u_2} [OrderedAddCommMonoid β] {l : Filter α} {f : αβ} {g : αβ} (hf : Filter.Tendsto f l Filter.atTop) (hg : Filter.Tendsto g l Filter.atTop) :
Filter.Tendsto (fun (x : α) => f x + g x) l Filter.atTop
theorem Filter.tendsto_atBot_add {α : Type u_1} {β : Type u_2} [OrderedAddCommMonoid β] {l : Filter α} {f : αβ} {g : αβ} (hf : Filter.Tendsto f l Filter.atBot) (hg : Filter.Tendsto g l Filter.atBot) :
Filter.Tendsto (fun (x : α) => f x + g x) l Filter.atBot
theorem Filter.Tendsto.nsmul_atTop {α : Type u_1} {β : Type u_2} [OrderedAddCommMonoid β] {l : Filter α} {f : αβ} (hf : Filter.Tendsto f l Filter.atTop) {n : } (hn : 0 < n) :
Filter.Tendsto (fun (x : α) => n f x) l Filter.atTop
theorem Filter.Tendsto.nsmul_atBot {α : Type u_1} {β : Type u_2} [OrderedAddCommMonoid β] {l : Filter α} {f : αβ} (hf : Filter.Tendsto f l Filter.atBot) {n : } (hn : 0 < n) :
Filter.Tendsto (fun (x : α) => n f x) l Filter.atBot
theorem Filter.tendsto_atTop_of_add_const_left {α : Type u_1} {β : Type u_2} [OrderedCancelAddCommMonoid β] {l : Filter α} {f : αβ} (C : β) (hf : Filter.Tendsto (fun (x : α) => C + f x) l Filter.atTop) :
Filter.Tendsto f l Filter.atTop
theorem Filter.tendsto_atBot_of_add_const_left {α : Type u_1} {β : Type u_2} [OrderedCancelAddCommMonoid β] {l : Filter α} {f : αβ} (C : β) (hf : Filter.Tendsto (fun (x : α) => C + f x) l Filter.atBot) :
Filter.Tendsto f l Filter.atBot
theorem Filter.tendsto_atTop_of_add_const_right {α : Type u_1} {β : Type u_2} [OrderedCancelAddCommMonoid β] {l : Filter α} {f : αβ} (C : β) (hf : Filter.Tendsto (fun (x : α) => f x + C) l Filter.atTop) :
Filter.Tendsto f l Filter.atTop
theorem Filter.tendsto_atBot_of_add_const_right {α : Type u_1} {β : Type u_2} [OrderedCancelAddCommMonoid β] {l : Filter α} {f : αβ} (C : β) (hf : Filter.Tendsto (fun (x : α) => f x + C) l Filter.atBot) :
Filter.Tendsto f l Filter.atBot
theorem Filter.tendsto_atTop_of_add_bdd_above_left' {α : Type u_1} {β : Type u_2} [OrderedCancelAddCommMonoid β] {l : Filter α} {f : αβ} {g : αβ} (C : β) (hC : ∀ᶠ (x : α) in l, f x C) (h : Filter.Tendsto (fun (x : α) => f x + g x) l Filter.atTop) :
Filter.Tendsto g l Filter.atTop
theorem Filter.tendsto_atBot_of_add_bdd_below_left' {α : Type u_1} {β : Type u_2} [OrderedCancelAddCommMonoid β] {l : Filter α} {f : αβ} {g : αβ} (C : β) (hC : ∀ᶠ (x : α) in l, C f x) (h : Filter.Tendsto (fun (x : α) => f x + g x) l Filter.atBot) :
Filter.Tendsto g l Filter.atBot
theorem Filter.tendsto_atTop_of_add_bdd_above_left {α : Type u_1} {β : Type u_2} [OrderedCancelAddCommMonoid β] {l : Filter α} {f : αβ} {g : αβ} (C : β) (hC : ∀ (x : α), f x C) :
Filter.Tendsto (fun (x : α) => f x + g x) l Filter.atTopFilter.Tendsto g l Filter.atTop
theorem Filter.tendsto_atBot_of_add_bdd_below_left {α : Type u_1} {β : Type u_2} [OrderedCancelAddCommMonoid β] {l : Filter α} {f : αβ} {g : αβ} (C : β) (hC : ∀ (x : α), C f x) :
Filter.Tendsto (fun (x : α) => f x + g x) l Filter.atBotFilter.Tendsto g l Filter.atBot
theorem Filter.tendsto_atTop_of_add_bdd_above_right' {α : Type u_1} {β : Type u_2} [OrderedCancelAddCommMonoid β] {l : Filter α} {f : αβ} {g : αβ} (C : β) (hC : ∀ᶠ (x : α) in l, g x C) (h : Filter.Tendsto (fun (x : α) => f x + g x) l Filter.atTop) :
Filter.Tendsto f l Filter.atTop
theorem Filter.tendsto_atBot_of_add_bdd_below_right' {α : Type u_1} {β : Type u_2} [OrderedCancelAddCommMonoid β] {l : Filter α} {f : αβ} {g : αβ} (C : β) (hC : ∀ᶠ (x : α) in l, C g x) (h : Filter.Tendsto (fun (x : α) => f x + g x) l Filter.atBot) :
Filter.Tendsto f l Filter.atBot
theorem Filter.tendsto_atTop_of_add_bdd_above_right {α : Type u_1} {β : Type u_2} [OrderedCancelAddCommMonoid β] {l : Filter α} {f : αβ} {g : αβ} (C : β) (hC : ∀ (x : α), g x C) :
Filter.Tendsto (fun (x : α) => f x + g x) l Filter.atTopFilter.Tendsto f l Filter.atTop
theorem Filter.tendsto_atBot_of_add_bdd_below_right {α : Type u_1} {β : Type u_2} [OrderedCancelAddCommMonoid β] {l : Filter α} {f : αβ} {g : αβ} (C : β) (hC : ∀ (x : α), C g x) :
Filter.Tendsto (fun (x : α) => f x + g x) l Filter.atBotFilter.Tendsto f l Filter.atBot