Iterations of a function #
In this file we prove simple properties of Nat.iterate f n
a.k.a. f^[n]
:
iterate_zero
,iterate_succ
,iterate_succ'
,iterate_add
,iterate_mul
: formulas forf^[0]
,f^[n+1]
(two versions),f^[n+m]
, andf^[n*m]
;iterate_id
:id^[n]=id
;Injective.iterate
,Surjective.iterate
,Bijective.iterate
: iterates of an injective/surjective/bijective function belong to the same class;LeftInverse.iterate
,RightInverse.iterate
,Commute.iterate_left
,Commute.iterate_right
,Commute.iterate_iterate
: some properties of pairs of functions survive under iterationsiterate_fixed
,Function.Semiconj.iterate_*
,Function.Semiconj₂.iterate
: iff
fixes a point (resp., semiconjugates unary/binary operations), then so doesf^[n]
.
Iterate a function.
Equations
- One or more equations did not get rendered due to their size.
Instances For
A recursor for the iterate of a function.
Equations
- Function.Iterate.rec p h ha 0 = ha
- Function.Iterate.rec p h ha m.succ = Function.Iterate.rec p h (h a ha) m