Documentation

Mathlib.Data.Set.SymmDiff

Symmetric differences of sets #

theorem Set.mem_symmDiff {α : Type u} {a : α} {s : Set α} {t : Set α} :
a symmDiff s t a s at a t as
theorem Set.symmDiff_def {α : Type u} (s : Set α) (t : Set α) :
symmDiff s t = s \ t t \ s
theorem Set.symmDiff_subset_union {α : Type u} {s : Set α} {t : Set α} :
symmDiff s t s t
@[simp]
theorem Set.symmDiff_eq_empty {α : Type u} {s : Set α} {t : Set α} :
symmDiff s t = s = t
@[simp]
theorem Set.symmDiff_nonempty {α : Type u} {s : Set α} {t : Set α} :
(symmDiff s t).Nonempty s t
theorem Set.inter_symmDiff_distrib_left {α : Type u} (s : Set α) (t : Set α) (u : Set α) :
s symmDiff t u = symmDiff (s t) (s u)
theorem Set.inter_symmDiff_distrib_right {α : Type u} (s : Set α) (t : Set α) (u : Set α) :
symmDiff s t u = symmDiff (s u) (t u)
theorem Set.subset_symmDiff_union_symmDiff_left {α : Type u} {s : Set α} {t : Set α} {u : Set α} (h : Disjoint s t) :
theorem Set.subset_symmDiff_union_symmDiff_right {α : Type u} {s : Set α} {t : Set α} {u : Set α} (h : Disjoint t u) :