Extra definitions on Option
#
This file defines more operations involving Option α
. Lemmas about them are located in other
files under Mathlib.Data.Option
.
Other basic operations on Option
are defined in the core library.
def
Option.traverse
{F : Type u → Type v}
[Applicative F]
{α : Type u_1}
{β : Type u}
(f : α → F β)
:
Traverse an object of Option α
with a function f : α → F β
for an applicative F
.
Equations
- Option.traverse f none = pure none
- Option.traverse f (some x_1) = some <$> f x_1
Instances For
An elimination principle for Option
. It is a nondependent version of Option.rec
.
Equations
- Option.elim' b f (some a) = f a
- Option.elim' b f none = b
Instances For
@[simp]
theorem
Option.elim'_none
{α : Type u_1}
{β : Type u_2}
(b : β)
(f : α → β)
:
Option.elim' b f none = b
@[simp]
theorem
Option.elim'_some
{α : Type u_1}
{β : Type u_2}
{a : α}
(b : β)
(f : α → β)
:
Option.elim' b f (some a) = f a
theorem
Option.elim'_eq_elim
{α : Type u_3}
{β : Type u_4}
(b : β)
(f : α → β)
(a : Option α)
:
Option.elim' b f a = a.elim b f
@[inline]
o = none
is decidable even if the wrapped type does not have decidable equality.
This is not an instance because it is not definitionally equal to Option.decidableEq
.
Try to use o.isNone
or o.isSome
instead.
Equations
- Option.decidableEqNone = decidable_of_decidable_of_iff ⋯
Instances For
Equations
- ⋯ = ⋯
Equations
- ⋯ = ⋯
Equations
- ⋯ = ⋯
instance
Option.liftOrGet_isId
{α : Type u_1}
(f : α → α → α)
:
Std.LawfulIdentity (Option.liftOrGet f) none
Equations
- ⋯ = ⋯
Convert undef
to none
to make an LOption
into an Option
.
Equations
- (Lean.LOption.some a).toOption = some a
- x.toOption = none