Documentation

Mathlib.Data.Nat.Sqrt

Properties of the natural number square root function. #

sqrt #

See [Wikipedia, Methods of computing square roots] (https://en.wikipedia.org/wiki/Methods_of_computing_square_roots#Binary_numeral_system_(base_2)).

@[irreducible]
theorem Nat.sqrt.iter_sq_le (n : ) (guess : ) :
Nat.sqrt.iter n guess * Nat.sqrt.iter n guess n
@[irreducible]
theorem Nat.sqrt.lt_iter_succ_sq (n : ) (guess : ) (hn : n < (guess + 1) * (guess + 1)) :
n < (Nat.sqrt.iter n guess + 1) * (Nat.sqrt.iter n guess + 1)
theorem Nat.sqrt_le (n : ) :
n.sqrt * n.sqrt n
theorem Nat.sqrt_le' (n : ) :
n.sqrt ^ 2 n
theorem Nat.lt_succ_sqrt (n : ) :
n < n.sqrt.succ * n.sqrt.succ
theorem Nat.lt_succ_sqrt' (n : ) :
n < n.sqrt.succ ^ 2
theorem Nat.sqrt_le_add (n : ) :
n n.sqrt * n.sqrt + n.sqrt + n.sqrt
theorem Nat.le_sqrt {m : } {n : } :
m n.sqrt m * m n
theorem Nat.le_sqrt' {m : } {n : } :
m n.sqrt m ^ 2 n
theorem Nat.sqrt_lt {m : } {n : } :
m.sqrt < n m < n * n
theorem Nat.sqrt_lt' {m : } {n : } :
m.sqrt < n m < n ^ 2
theorem Nat.sqrt_le_self (n : ) :
n.sqrt n
theorem Nat.sqrt_le_sqrt {m : } {n : } (h : m n) :
m.sqrt n.sqrt
@[simp]
theorem Nat.sqrt_zero :
@[simp]
theorem Nat.sqrt_one :
theorem Nat.sqrt_eq_zero {n : } :
n.sqrt = 0 n = 0
theorem Nat.eq_sqrt {n : } {a : } :
a = n.sqrt a * a n n < (a + 1) * (a + 1)
theorem Nat.eq_sqrt' {n : } {a : } :
a = n.sqrt a ^ 2 n n < (a + 1) ^ 2
theorem Nat.le_three_of_sqrt_eq_one {n : } (h : n.sqrt = 1) :
n 3
theorem Nat.sqrt_lt_self {n : } (h : 1 < n) :
n.sqrt < n
theorem Nat.sqrt_pos {n : } :
0 < n.sqrt 0 < n
theorem Nat.sqrt_add_eq {a : } (n : ) (h : a n + n) :
(n * n + a).sqrt = n
theorem Nat.sqrt_add_eq' {a : } (n : ) (h : a n + n) :
(n ^ 2 + a).sqrt = n
theorem Nat.sqrt_eq (n : ) :
(n * n).sqrt = n
theorem Nat.sqrt_eq' (n : ) :
(n ^ 2).sqrt = n
theorem Nat.sqrt_succ_le_succ_sqrt (n : ) :
n.succ.sqrt n.sqrt.succ
theorem Nat.exists_mul_self (x : ) :
(∃ (n : ), n * n = x) x.sqrt * x.sqrt = x
theorem Nat.exists_mul_self' (x : ) :
(∃ (n : ), n ^ 2 = x) x.sqrt ^ 2 = x
theorem Nat.sqrt_mul_sqrt_lt_succ (n : ) :
n.sqrt * n.sqrt < n + 1
theorem Nat.sqrt_mul_sqrt_lt_succ' (n : ) :
n.sqrt ^ 2 < n + 1
theorem Nat.succ_le_succ_sqrt (n : ) :
n + 1 (n.sqrt + 1) * (n.sqrt + 1)
theorem Nat.succ_le_succ_sqrt' (n : ) :
n + 1 (n.sqrt + 1) ^ 2
theorem Nat.not_exists_sq {m : } {n : } (hl : m * m < n) (hr : n < (m + 1) * (m + 1)) :
¬∃ (t : ), t * t = n

There are no perfect squares strictly between m² and (m+1)²

theorem Nat.not_exists_sq' {m : } {n : } :
m ^ 2 < nn < (m + 1) ^ 2¬∃ (t : ), t ^ 2 = n