Disjoint sum of multisets #
This file defines the disjoint sum of two multisets as Multiset (α ⊕ β)
. Beware not to confuse
with the Multiset.sum
operation which computes the additive sum.
Main declarations #
Multiset.disjSum
:s.disjSum t
is the disjoint sum ofs
andt
.
Disjoint sum of multisets.
Equations
- s.disjSum t = Multiset.map Sum.inl s + Multiset.map Sum.inr t
Instances For
@[simp]
theorem
Multiset.zero_disjSum
{α : Type u_1}
{β : Type u_2}
(t : Multiset β)
:
Multiset.disjSum 0 t = Multiset.map Sum.inr t
@[simp]
theorem
Multiset.disjSum_zero
{α : Type u_1}
{β : Type u_2}
(s : Multiset α)
:
s.disjSum 0 = Multiset.map Sum.inl s
theorem
Multiset.disjSum_strictMono_left
{α : Type u_1}
{β : Type u_2}
(t : Multiset β)
:
StrictMono fun (s : Multiset α) => s.disjSum t
theorem
Multiset.disjSum_strictMono_right
{α : Type u_1}
{β : Type u_2}
(s : Multiset α)
:
StrictMono s.disjSum