@[simp]
theorem
List.finRange_succ_eq_map
(n : ℕ)
:
List.finRange n.succ = 0 :: List.map Fin.succ (List.finRange n)
theorem
List.finRange_succ
(n : ℕ)
:
List.finRange n.succ = (List.map Fin.castSucc (List.finRange n)).concat (Fin.last n)
theorem
List.ofFn_eq_map
{α : Type u}
{n : ℕ}
{f : Fin n → α}
:
List.ofFn f = List.map f (List.finRange n)
theorem
List.nodup_ofFn_ofInjective
{α : Type u}
{n : ℕ}
{f : Fin n → α}
(hf : Function.Injective f)
:
(List.ofFn f).Nodup
theorem
List.nodup_ofFn
{α : Type u}
{n : ℕ}
{f : Fin n → α}
:
(List.ofFn f).Nodup ↔ Function.Injective f
theorem
Equiv.Perm.map_finRange_perm
{n : ℕ}
(σ : Equiv.Perm (Fin n))
:
(List.map (⇑σ) (List.finRange n)).Perm (List.finRange n)
The list obtained from a permutation of a tuple f
is permutation equivalent to
the list obtained from f
.