Documentation

Mathlib.Combinatorics.Quiver.Basic

Quivers #

This module defines quivers. A quiver on a type V of vertices assigns to every pair a b : V of vertices a type a ⟶ b of arrows from a to b. This is a very permissive notion of directed graph.

Implementation notes #

Currently Quiver is defined with Hom : V → V → Sort v. This is different from the category theory setup, where we insist that morphisms live in some Type. There's some balance here: it's nice to allow Prop to ensure there are no multiple arrows, but it is also results in error-prone universe signatures when constraints require a Type.

class Quiver (V : Type u) :
Type (max u v)

A quiver G on a type V of vertices assigns to every pair a b : V of vertices a type a ⟶ b of arrows from a to b.

For graphs with no repeated edges, one can use Quiver.{0} V, which ensures a ⟶ b : Prop. For multigraphs, one can use Quiver.{v+1} V, which ensures a ⟶ b : Type v.

Because Category will later extend this class, we call the field Hom. Except when constructing instances, you should rarely see this, and use the notation instead.

  • Hom : VVSort v

    The type of edges/arrows/morphisms between a given source and target.

Instances

    Notation for the type of edges/arrows/morphisms between a given source and target in a quiver or category.

    Equations
    structure Prefunctor (V : Type u₁) [Quiver V] (W : Type u₂) [Quiver W] :
    Sort (max (max (max (u₁ + 1) (u₂ + 1)) v₁) v₂)

    A morphism of quivers. As we will later have categorical functors extend this structure, we call it a Prefunctor.

    • obj : VW

      The action of a (pre)functor on vertices/objects.

    • map : {X Y : V} → (X Y)(self.obj X self.obj Y)

      The action of a (pre)functor on edges/arrows/morphisms.

    theorem Prefunctor.mk_obj {V : Type u_1} {W : Type u_2} [Quiver V] [Quiver W] {obj : VW} {map : {X Y : V} → (X Y)(obj X obj Y)} {X : V} :
    { obj := obj, map := map }.obj X = obj X
    theorem Prefunctor.mk_map {V : Type u_1} {W : Type u_2} [Quiver V] [Quiver W] {obj : VW} {map : {X Y : V} → (X Y)(obj X obj Y)} {X : V} {Y : V} {f : X Y} :
    { obj := obj, map := map }.map f = map f
    theorem Prefunctor.ext {V : Type u} [Quiver V] {W : Type u₂} [Quiver W] {F : V ⥤q W} {G : V ⥤q W} (h_obj : ∀ (X : V), F.obj X = G.obj X) (h_map : ∀ (X Y : V) (f : X Y), F.map f = Eq.recOn (Eq.recOn (G.map f))) :
    F = G
    @[simp]
    theorem Prefunctor.id_map (V : Type u_1) [Quiver V] :
    ∀ {X Y : V} (f : X Y), (𝟭q V).map f = f
    @[simp]
    theorem Prefunctor.id_obj (V : Type u_1) [Quiver V] (X : V) :
    (𝟭q V).obj X = X
    def Prefunctor.id (V : Type u_1) [Quiver V] :
    V ⥤q V

    The identity morphism between quivers.

    Equations
    • 𝟭q V = { obj := fun (X : V) => X, map := fun {X Y : V} (f : X Y) => f }
    instance Prefunctor.instInhabited (V : Type u_1) [Quiver V] :
    Equations
    @[simp]
    theorem Prefunctor.comp_obj {U : Type u_1} [Quiver U] {V : Type u_2} [Quiver V] {W : Type u_3} [Quiver W] (F : U ⥤q V) (G : V ⥤q W) (X : U) :
    (F ⋙q G).obj X = G.obj (F.obj X)
    @[simp]
    theorem Prefunctor.comp_map {U : Type u_1} [Quiver U] {V : Type u_2} [Quiver V] {W : Type u_3} [Quiver W] (F : U ⥤q V) (G : V ⥤q W) :
    ∀ {X Y : U} (f : X Y), (F ⋙q G).map f = G.map (F.map f)
    def Prefunctor.comp {U : Type u_1} [Quiver U] {V : Type u_2} [Quiver V] {W : Type u_3} [Quiver W] (F : U ⥤q V) (G : V ⥤q W) :
    U ⥤q W

    Composition of morphisms between quivers.

    Equations
    • F ⋙q G = { obj := fun (X : U) => G.obj (F.obj X), map := fun {X Y : U} (f : X Y) => G.map (F.map f) }
    @[simp]
    theorem Prefunctor.comp_id {U : Type u_1} {V : Type u_2} [Quiver U] [Quiver V] (F : U ⥤q V) :
    F ⋙q 𝟭q V = F
    @[simp]
    theorem Prefunctor.id_comp {U : Type u_1} {V : Type u_2} [Quiver U] [Quiver V] (F : U ⥤q V) :
    𝟭q U ⋙q F = F
    @[simp]
    theorem Prefunctor.comp_assoc {U : Type u_1} {V : Type u_2} {W : Type u_3} {Z : Type u_4} [Quiver U] [Quiver V] [Quiver W] [Quiver Z] (F : U ⥤q V) (G : V ⥤q W) (H : W ⥤q Z) :
    F ⋙q G ⋙q H = F ⋙q (G ⋙q H)

    Notation for a prefunctor between quivers.

    Equations

    Notation for composition of prefunctors.

    Equations

    Notation for the identity prefunctor on a quiver.

    Equations
    theorem Prefunctor.congr_map {U : Type u_1} {V : Type u_2} [Quiver U] [Quiver V] (F : U ⥤q V) {X : U} {Y : U} {f : X Y} {g : X Y} (h : f = g) :
    F.map f = F.map g
    instance Quiver.opposite {V : Type u_1} [Quiver V] :

    Vᵒᵖ reverses the direction of all arrows of V.

    Equations
    def Quiver.Hom.op {V : Type u_1} [Quiver V] {X : V} {Y : V} (f : X Y) :

    The opposite of an arrow in V.

    Equations
    def Quiver.Hom.unop {V : Type u_1} [Quiver V] {X : Vᵒᵖ} {Y : Vᵒᵖ} (f : X Y) :

    Given an arrow in Vᵒᵖ, we can take the "unopposite" back in V.

    Equations
    @[simp]
    theorem Quiver.Hom.opEquiv_symm_apply {V : Type u_1} [Quiver V] {X : V} {Y : V} (self : (Opposite.unop (Opposite.op X) Opposite.unop (Opposite.op Y))ᵒᵖ) :
    Quiver.Hom.opEquiv.symm self = Opposite.unop self
    @[simp]
    theorem Quiver.Hom.opEquiv_apply {V : Type u_1} [Quiver V] {X : V} {Y : V} (unop : X Y) :
    Quiver.Hom.opEquiv unop = Opposite.op unop
    def Quiver.Hom.opEquiv {V : Type u_1} [Quiver V] {X : V} {Y : V} :

    The bijection (X ⟶ Y) ≃ (op Y ⟶ op X).

    Equations
    • Quiver.Hom.opEquiv = { toFun := Opposite.op, invFun := Opposite.unop, left_inv := , right_inv := }
    def Quiver.Empty (V : Type u) :

    A type synonym for a quiver with no arrows.

    Equations
    Equations
    @[simp]
    theorem Quiver.empty_arrow {V : Type u} (a : Quiver.Empty V) (b : Quiver.Empty V) :
    @[reducible, inline]
    abbrev Quiver.IsThin (V : Type u) [Quiver V] :

    A quiver is thin if it has no parallel arrows.

    Equations