Univariate monomials #
Preparatory lemmas for degree_basic.
theorem
Polynomial.monomial_one_eq_iff
{R : Type u}
[Semiring R]
[Nontrivial R]
{i : ℕ}
{j : ℕ}
:
(Polynomial.monomial i) 1 = (Polynomial.monomial j) 1 ↔ i = j
Equations
- ⋯ = ⋯
theorem
Polynomial.card_support_le_one_iff_monomial
{R : Type u}
[Semiring R]
{f : Polynomial R}
:
f.support.card ≤ 1 ↔ ∃ (n : ℕ) (a : R), f = (Polynomial.monomial n) a
theorem
Polynomial.ringHom_ext
{R : Type u}
[Semiring R]
{S : Type u_1}
[Semiring S]
{f : Polynomial R →+* S}
{g : Polynomial R →+* S}
(h₁ : ∀ (a : R), f (Polynomial.C a) = g (Polynomial.C a))
(h₂ : f Polynomial.X = g Polynomial.X)
:
f = g
theorem
Polynomial.ringHom_ext'_iff
{R : Type u}
[Semiring R]
{S : Type u_1}
[Semiring S]
{f : Polynomial R →+* S}
{g : Polynomial R →+* S}
:
theorem
Polynomial.ringHom_ext'
{R : Type u}
[Semiring R]
{S : Type u_1}
[Semiring S]
{f : Polynomial R →+* S}
{g : Polynomial R →+* S}
(h₁ : f.comp Polynomial.C = g.comp Polynomial.C)
(h₂ : f Polynomial.X = g Polynomial.X)
:
f = g