Nonnegative elements are archimedean #
This file defines instances and prove some properties about the nonnegative elements
{x : α // 0 ≤ x}
of an arbitrary type α
.
This is used to derive algebraic structures on ℝ≥0
and ℚ≥0
automatically.
Main declarations #
{x : α // 0 ≤ x}
is aFloorSemiring
ifα
is.
instance
Nonneg.floorSemiring
{α : Type u_1}
[OrderedSemiring α]
[FloorSemiring α]
:
FloorSemiring { r : α // 0 ≤ r }
theorem
Nonneg.nat_floor_coe
{α : Type u_1}
[OrderedSemiring α]
[FloorSemiring α]
(a : { r : α // 0 ≤ r })
:
theorem
Nonneg.nat_ceil_coe
{α : Type u_1}
[OrderedSemiring α]
[FloorSemiring α]
(a : { r : α // 0 ≤ r })
: