Lemmas about min
and max
in an ordered monoid. #
Some lemmas about types that have an ordering and a binary operation, with no rules relating them.
theorem
fn_min_add_fn_max
{α : Type u_1}
{β : Type u_2}
[LinearOrder α]
[AddCommSemigroup β]
(f : α → β)
(a : α)
(b : α)
:
theorem
fn_min_mul_fn_max
{α : Type u_1}
{β : Type u_2}
[LinearOrder α]
[CommSemigroup β]
(f : α → β)
(a : α)
(b : α)
:
theorem
fn_max_add_fn_min
{α : Type u_1}
{β : Type u_2}
[LinearOrder α]
[AddCommSemigroup β]
(f : α → β)
(a : α)
(b : α)
:
theorem
fn_max_mul_fn_min
{α : Type u_1}
{β : Type u_2}
[LinearOrder α]
[CommSemigroup β]
(f : α → β)
(a : α)
(b : α)
:
@[simp]
@[simp]
@[simp]
@[simp]
theorem
min_add_add_left
{α : Type u_1}
[LinearOrder α]
[Add α]
[AddLeftMono α]
(a : α)
(b : α)
(c : α)
:
theorem
min_mul_mul_left
{α : Type u_1}
[LinearOrder α]
[Mul α]
[MulLeftMono α]
(a : α)
(b : α)
(c : α)
:
theorem
max_add_add_left
{α : Type u_1}
[LinearOrder α]
[Add α]
[AddLeftMono α]
(a : α)
(b : α)
(c : α)
:
theorem
max_mul_mul_left
{α : Type u_1}
[LinearOrder α]
[Mul α]
[MulLeftMono α]
(a : α)
(b : α)
(c : α)
:
theorem
min_add_add_right
{α : Type u_1}
[LinearOrder α]
[Add α]
[AddRightMono α]
(a : α)
(b : α)
(c : α)
:
theorem
min_mul_mul_right
{α : Type u_1}
[LinearOrder α]
[Mul α]
[MulRightMono α]
(a : α)
(b : α)
(c : α)
:
theorem
max_add_add_right
{α : Type u_1}
[LinearOrder α]
[Add α]
[AddRightMono α]
(a : α)
(b : α)
(c : α)
:
theorem
max_mul_mul_right
{α : Type u_1}
[LinearOrder α]
[Mul α]
[MulRightMono α]
(a : α)
(b : α)
(c : α)
:
theorem
lt_or_lt_of_add_lt_add
{α : Type u_1}
[LinearOrder α]
[Add α]
[AddLeftMono α]
[AddRightMono α]
{a₁ : α}
{a₂ : α}
{b₁ : α}
{b₂ : α}
:
theorem
lt_or_lt_of_mul_lt_mul
{α : Type u_1}
[LinearOrder α]
[Mul α]
[MulLeftMono α]
[MulRightMono α]
{a₁ : α}
{a₂ : α}
{b₁ : α}
{b₂ : α}
:
theorem
le_or_lt_of_add_le_add
{α : Type u_1}
[LinearOrder α]
[Add α]
[AddLeftMono α]
[AddRightStrictMono α]
{a₁ : α}
{a₂ : α}
{b₁ : α}
{b₂ : α}
:
theorem
le_or_lt_of_mul_le_mul
{α : Type u_1}
[LinearOrder α]
[Mul α]
[MulLeftMono α]
[MulRightStrictMono α]
{a₁ : α}
{a₂ : α}
{b₁ : α}
{b₂ : α}
:
theorem
lt_or_le_of_add_le_add
{α : Type u_1}
[LinearOrder α]
[Add α]
[AddLeftStrictMono α]
[AddRightMono α]
{a₁ : α}
{a₂ : α}
{b₁ : α}
{b₂ : α}
:
theorem
lt_or_le_of_mul_le_mul
{α : Type u_1}
[LinearOrder α]
[Mul α]
[MulLeftStrictMono α]
[MulRightMono α]
{a₁ : α}
{a₂ : α}
{b₁ : α}
{b₂ : α}
:
theorem
le_or_le_of_add_le_add
{α : Type u_1}
[LinearOrder α]
[Add α]
[AddLeftStrictMono α]
[AddRightStrictMono α]
{a₁ : α}
{a₂ : α}
{b₁ : α}
{b₂ : α}
:
theorem
le_or_le_of_mul_le_mul
{α : Type u_1}
[LinearOrder α]
[Mul α]
[MulLeftStrictMono α]
[MulRightStrictMono α]
{a₁ : α}
{a₂ : α}
{b₁ : α}
{b₂ : α}
:
theorem
add_lt_add_iff_of_le_of_le
{α : Type u_1}
[LinearOrder α]
[Add α]
[AddLeftMono α]
[AddRightMono α]
[AddLeftStrictMono α]
[AddRightStrictMono α]
{a₁ : α}
{a₂ : α}
{b₁ : α}
{b₂ : α}
(ha : a₁ ≤ a₂)
(hb : b₁ ≤ b₂)
:
theorem
mul_lt_mul_iff_of_le_of_le
{α : Type u_1}
[LinearOrder α]
[Mul α]
[MulLeftMono α]
[MulRightMono α]
[MulLeftStrictMono α]
[MulRightStrictMono α]
{a₁ : α}
{a₂ : α}
{b₁ : α}
{b₂ : α}
(ha : a₁ ≤ a₂)
(hb : b₁ ≤ b₂)
:
theorem
min_le_add_of_nonneg_right
{α : Type u_1}
[LinearOrder α]
[AddZeroClass α]
[AddLeftMono α]
{a : α}
{b : α}
(hb : 0 ≤ b)
:
theorem
min_le_mul_of_one_le_right
{α : Type u_1}
[LinearOrder α]
[MulOneClass α]
[MulLeftMono α]
{a : α}
{b : α}
(hb : 1 ≤ b)
:
theorem
min_le_add_of_nonneg_left
{α : Type u_1}
[LinearOrder α]
[AddZeroClass α]
[AddRightMono α]
{a : α}
{b : α}
(ha : 0 ≤ a)
:
theorem
min_le_mul_of_one_le_left
{α : Type u_1}
[LinearOrder α]
[MulOneClass α]
[MulRightMono α]
{a : α}
{b : α}
(ha : 1 ≤ a)
:
theorem
max_le_add_of_nonneg
{α : Type u_1}
[LinearOrder α]
[AddZeroClass α]
[AddLeftMono α]
[AddRightMono α]
{a : α}
{b : α}
(ha : 0 ≤ a)
(hb : 0 ≤ b)
:
theorem
max_le_mul_of_one_le
{α : Type u_1}
[LinearOrder α]
[MulOneClass α]
[MulLeftMono α]
[MulRightMono α]
{a : α}
{b : α}
(ha : 1 ≤ a)
(hb : 1 ≤ b)
: