Images of intervals under (+ d)
#
The lemmas in this file state that addition maps intervals bijectively. The typeclass
ExistsAddOfLE
is defined specifically to make them work when combined with
OrderedCancelAddCommMonoid
; the lemmas below therefore apply to all
OrderedAddCommGroup
, but also to ℕ
and ℝ≥0
, which are not groups.
theorem
Set.Ici_add_bij
{M : Type u_1}
[OrderedCancelAddCommMonoid M]
[ExistsAddOfLE M]
(a : M)
(d : M)
:
theorem
Set.Ioi_add_bij
{M : Type u_1}
[OrderedCancelAddCommMonoid M]
[ExistsAddOfLE M]
(a : M)
(d : M)
:
theorem
Set.Icc_add_bij
{M : Type u_1}
[OrderedCancelAddCommMonoid M]
[ExistsAddOfLE M]
(a : M)
(b : M)
(d : M)
:
theorem
Set.Ioo_add_bij
{M : Type u_1}
[OrderedCancelAddCommMonoid M]
[ExistsAddOfLE M]
(a : M)
(b : M)
(d : M)
:
theorem
Set.Ioc_add_bij
{M : Type u_1}
[OrderedCancelAddCommMonoid M]
[ExistsAddOfLE M]
(a : M)
(b : M)
(d : M)
:
theorem
Set.Ico_add_bij
{M : Type u_1}
[OrderedCancelAddCommMonoid M]
[ExistsAddOfLE M]
(a : M)
(b : M)
(d : M)
:
Images under x ↦ x + a
#
@[simp]
theorem
Set.image_add_const_Ici
{M : Type u_1}
[OrderedCancelAddCommMonoid M]
[ExistsAddOfLE M]
(a : M)
(b : M)
:
@[simp]
theorem
Set.image_add_const_Ioi
{M : Type u_1}
[OrderedCancelAddCommMonoid M]
[ExistsAddOfLE M]
(a : M)
(b : M)
:
@[simp]
theorem
Set.image_add_const_Icc
{M : Type u_1}
[OrderedCancelAddCommMonoid M]
[ExistsAddOfLE M]
(a : M)
(b : M)
(c : M)
:
@[simp]
theorem
Set.image_add_const_Ico
{M : Type u_1}
[OrderedCancelAddCommMonoid M]
[ExistsAddOfLE M]
(a : M)
(b : M)
(c : M)
:
@[simp]
theorem
Set.image_add_const_Ioc
{M : Type u_1}
[OrderedCancelAddCommMonoid M]
[ExistsAddOfLE M]
(a : M)
(b : M)
(c : M)
:
@[simp]
theorem
Set.image_add_const_Ioo
{M : Type u_1}
[OrderedCancelAddCommMonoid M]
[ExistsAddOfLE M]
(a : M)
(b : M)
(c : M)
:
Images under x ↦ a + x
#
@[simp]
theorem
Set.image_const_add_Ici
{M : Type u_1}
[OrderedCancelAddCommMonoid M]
[ExistsAddOfLE M]
(a : M)
(b : M)
:
@[simp]
theorem
Set.image_const_add_Ioi
{M : Type u_1}
[OrderedCancelAddCommMonoid M]
[ExistsAddOfLE M]
(a : M)
(b : M)
:
@[simp]
theorem
Set.image_const_add_Icc
{M : Type u_1}
[OrderedCancelAddCommMonoid M]
[ExistsAddOfLE M]
(a : M)
(b : M)
(c : M)
:
@[simp]
theorem
Set.image_const_add_Ico
{M : Type u_1}
[OrderedCancelAddCommMonoid M]
[ExistsAddOfLE M]
(a : M)
(b : M)
(c : M)
:
@[simp]
theorem
Set.image_const_add_Ioc
{M : Type u_1}
[OrderedCancelAddCommMonoid M]
[ExistsAddOfLE M]
(a : M)
(b : M)
(c : M)
:
@[simp]
theorem
Set.image_const_add_Ioo
{M : Type u_1}
[OrderedCancelAddCommMonoid M]
[ExistsAddOfLE M]
(a : M)
(b : M)
(c : M)
: