Inverse and multiplication as order isomorphisms in ordered groups #
x ↦ -x
as an order-reversing equivalence.
Equations
- OrderIso.neg α = { toEquiv := Equiv.trans (Equiv.neg α) OrderDual.toDual, map_rel_iff' := ⋯ }
Instances For
@[simp]
theorem
OrderIso.neg_symm_apply
(α : Type u)
[AddGroup α]
[LE α]
[AddLeftMono α]
[AddRightMono α]
:
∀ (a : αᵒᵈ), (RelIso.symm (OrderIso.neg α)) a = -OrderDual.ofDual a
@[simp]
theorem
OrderIso.inv_apply
(α : Type u)
[Group α]
[LE α]
[MulLeftMono α]
[MulRightMono α]
:
∀ (a : α), (OrderIso.inv α) a = OrderDual.toDual a⁻¹
@[simp]
theorem
OrderIso.inv_symm_apply
(α : Type u)
[Group α]
[LE α]
[MulLeftMono α]
[MulRightMono α]
:
∀ (a : αᵒᵈ), (RelIso.symm (OrderIso.inv α)) a = (OrderDual.ofDual a)⁻¹
@[simp]
theorem
OrderIso.neg_apply
(α : Type u)
[AddGroup α]
[LE α]
[AddLeftMono α]
[AddRightMono α]
:
∀ (a : α), (OrderIso.neg α) a = OrderDual.toDual (-a)
x ↦ x⁻¹
as an order-reversing equivalence.
Equations
- OrderIso.inv α = { toEquiv := Equiv.trans (Equiv.inv α) OrderDual.toDual, map_rel_iff' := ⋯ }
Instances For
theorem
inv_le_of_inv_le'
{α : Type u}
[Group α]
[LE α]
[MulLeftMono α]
[MulRightMono α]
{a : α}
{b : α}
:
Alias of the forward direction of inv_le'
.
theorem
neg_le_of_neg_le
{α : Type u}
[AddGroup α]
[LE α]
[AddLeftMono α]
[AddRightMono α]
{a : α}
{b : α}
:
x ↦ a - x
as an order-reversing equivalence.
Equations
- OrderIso.subLeft a = { toEquiv := (Equiv.subLeft a).trans OrderDual.toDual, map_rel_iff' := ⋯ }
Instances For
@[simp]
theorem
OrderIso.subLeft_symm_apply
{α : Type u}
[AddGroup α]
[LE α]
[AddLeftMono α]
[AddRightMono α]
(a : α)
:
∀ (a_1 : αᵒᵈ), (RelIso.symm (OrderIso.subLeft a)) a_1 = -OrderDual.ofDual a_1 + a
@[simp]
theorem
OrderIso.divLeft_apply
{α : Type u}
[Group α]
[LE α]
[MulLeftMono α]
[MulRightMono α]
(a : α)
:
∀ (a_1 : α), (OrderIso.divLeft a) a_1 = OrderDual.toDual (a / a_1)
@[simp]
theorem
OrderIso.subLeft_apply
{α : Type u}
[AddGroup α]
[LE α]
[AddLeftMono α]
[AddRightMono α]
(a : α)
:
∀ (a_1 : α), (OrderIso.subLeft a) a_1 = OrderDual.toDual (a - a_1)
@[simp]
theorem
OrderIso.divLeft_symm_apply
{α : Type u}
[Group α]
[LE α]
[MulLeftMono α]
[MulRightMono α]
(a : α)
:
∀ (a_1 : αᵒᵈ), (RelIso.symm (OrderIso.divLeft a)) a_1 = (OrderDual.ofDual a_1)⁻¹ * a
x ↦ a / x
as an order-reversing equivalence.
Equations
- OrderIso.divLeft a = { toEquiv := (Equiv.divLeft a).trans OrderDual.toDual, map_rel_iff' := ⋯ }
Instances For
theorem
le_inv_of_le_inv
{α : Type u}
[Group α]
[LE α]
[MulLeftMono α]
[MulRightMono α]
{a : α}
{b : α}
:
Alias of the forward direction of le_inv'
.
theorem
le_neg_of_le_neg
{α : Type u}
[AddGroup α]
[LE α]
[AddLeftMono α]
[AddRightMono α]
{a : α}
{b : α}
:
Equiv.addRight
as an OrderIso
. See also OrderEmbedding.addRight
.
Equations
- OrderIso.addRight a = { toEquiv := Equiv.addRight a, map_rel_iff' := ⋯ }
Instances For
@[simp]
theorem
OrderIso.mulRight_apply
{α : Type u}
[Group α]
[LE α]
[MulRightMono α]
(a : α)
(x : α)
:
(OrderIso.mulRight a) x = x * a
@[simp]
theorem
OrderIso.mulRight_toEquiv
{α : Type u}
[Group α]
[LE α]
[MulRightMono α]
(a : α)
:
(OrderIso.mulRight a).toEquiv = Equiv.mulRight a
@[simp]
theorem
OrderIso.addRight_apply
{α : Type u}
[AddGroup α]
[LE α]
[AddRightMono α]
(a : α)
(x : α)
:
(OrderIso.addRight a) x = x + a
@[simp]
theorem
OrderIso.addRight_toEquiv
{α : Type u}
[AddGroup α]
[LE α]
[AddRightMono α]
(a : α)
:
(OrderIso.addRight a).toEquiv = Equiv.addRight a
Equiv.mulRight
as an OrderIso
. See also OrderEmbedding.mulRight
.
Equations
- OrderIso.mulRight a = { toEquiv := Equiv.mulRight a, map_rel_iff' := ⋯ }
Instances For
@[simp]
theorem
OrderIso.addRight_symm
{α : Type u}
[AddGroup α]
[LE α]
[AddRightMono α]
(a : α)
:
(OrderIso.addRight a).symm = OrderIso.addRight (-a)
@[simp]
theorem
OrderIso.mulRight_symm
{α : Type u}
[Group α]
[LE α]
[MulRightMono α]
(a : α)
:
(OrderIso.mulRight a).symm = OrderIso.mulRight a⁻¹
x ↦ x - a
as an order isomorphism.
Equations
- OrderIso.subRight a = { toEquiv := Equiv.subRight a, map_rel_iff' := ⋯ }
Instances For
@[simp]
theorem
OrderIso.divRight_symm_apply
{α : Type u}
[Group α]
[LE α]
[MulRightMono α]
(a : α)
(b : α)
:
(RelIso.symm (OrderIso.divRight a)) b = b * a
@[simp]
theorem
OrderIso.divRight_apply
{α : Type u}
[Group α]
[LE α]
[MulRightMono α]
(a : α)
(b : α)
:
(OrderIso.divRight a) b = b / a
@[simp]
theorem
OrderIso.subRight_apply
{α : Type u}
[AddGroup α]
[LE α]
[AddRightMono α]
(a : α)
(b : α)
:
(OrderIso.subRight a) b = b - a
@[simp]
theorem
OrderIso.subRight_symm_apply
{α : Type u}
[AddGroup α]
[LE α]
[AddRightMono α]
(a : α)
(b : α)
:
(RelIso.symm (OrderIso.subRight a)) b = b + a
x ↦ x / a
as an order isomorphism.
Equations
- OrderIso.divRight a = { toEquiv := Equiv.divRight a, map_rel_iff' := ⋯ }
Instances For
Equiv.addLeft
as an OrderIso
. See also OrderEmbedding.addLeft
.
Equations
- OrderIso.addLeft a = { toEquiv := Equiv.addLeft a, map_rel_iff' := ⋯ }
Instances For
@[simp]
theorem
OrderIso.addLeft_toEquiv
{α : Type u}
[AddGroup α]
[LE α]
[AddLeftMono α]
(a : α)
:
(OrderIso.addLeft a).toEquiv = Equiv.addLeft a
@[simp]
theorem
OrderIso.mulLeft_toEquiv
{α : Type u}
[Group α]
[LE α]
[MulLeftMono α]
(a : α)
:
(OrderIso.mulLeft a).toEquiv = Equiv.mulLeft a
@[simp]
theorem
OrderIso.mulLeft_apply
{α : Type u}
[Group α]
[LE α]
[MulLeftMono α]
(a : α)
(x : α)
:
(OrderIso.mulLeft a) x = a * x
@[simp]
theorem
OrderIso.addLeft_apply
{α : Type u}
[AddGroup α]
[LE α]
[AddLeftMono α]
(a : α)
(x : α)
:
(OrderIso.addLeft a) x = a + x
Equiv.mulLeft
as an OrderIso
. See also OrderEmbedding.mulLeft
.
Equations
- OrderIso.mulLeft a = { toEquiv := Equiv.mulLeft a, map_rel_iff' := ⋯ }
Instances For
@[simp]
theorem
OrderIso.addLeft_symm
{α : Type u}
[AddGroup α]
[LE α]
[AddLeftMono α]
(a : α)
:
(OrderIso.addLeft a).symm = OrderIso.addLeft (-a)
@[simp]
theorem
OrderIso.mulLeft_symm
{α : Type u}
[Group α]
[LE α]
[MulLeftMono α]
(a : α)
:
(OrderIso.mulLeft a).symm = OrderIso.mulLeft a⁻¹