Pi instances for groups with zero #
This file defines monoid with zero, group with zero, and related structure instances for pi types.
instance
Pi.mulZeroClass
{ι : Type u_1}
{α : ι → Type u_2}
[(i : ι) → MulZeroClass (α i)]
:
MulZeroClass ((i : ι) → α i)
Equations
- Pi.mulZeroClass = MulZeroClass.mk ⋯ ⋯
@[simp]
theorem
MulHom.single_apply
{ι : Type u_1}
{α : ι → Type u_2}
[(i : ι) → MulZeroClass (α i)]
[DecidableEq ι]
(i : ι)
(x : α i)
(j : ι)
:
(MulHom.single i) x j = Pi.single i x j
def
MulHom.single
{ι : Type u_1}
{α : ι → Type u_2}
[(i : ι) → MulZeroClass (α i)]
[DecidableEq ι]
(i : ι)
:
α i →ₙ* (i : ι) → α i
The multiplicative homomorphism including a single MulZeroClass
into a dependent family of MulZeroClass
es, as functions supported at a point.
This is the MulHom
version of Pi.single
.
Equations
- MulHom.single i = { toFun := Pi.single i, map_mul' := ⋯ }
Instances For
theorem
Pi.single_mul
{ι : Type u_1}
{α : ι → Type u_2}
[(i : ι) → MulZeroClass (α i)]
[DecidableEq ι]
(i : ι)
(x : α i)
(y : α i)
:
theorem
Pi.single_mul_left_apply
{ι : Type u_1}
{α : ι → Type u_2}
[(i : ι) → MulZeroClass (α i)]
[DecidableEq ι]
(i : ι)
(j : ι)
(a : α i)
(f : (i : ι) → α i)
:
theorem
Pi.single_mul_right_apply
{ι : Type u_1}
{α : ι → Type u_2}
[(i : ι) → MulZeroClass (α i)]
[DecidableEq ι]
(i : ι)
(j : ι)
(f : (i : ι) → α i)
(a : α i)
:
theorem
Pi.single_mul_left
{ι : Type u_1}
{α : ι → Type u_2}
[(i : ι) → MulZeroClass (α i)]
[DecidableEq ι]
{i : ι}
{f : (i : ι) → α i}
(a : α i)
:
theorem
Pi.single_mul_right
{ι : Type u_1}
{α : ι → Type u_2}
[(i : ι) → MulZeroClass (α i)]
[DecidableEq ι]
{i : ι}
{f : (i : ι) → α i}
(a : α i)
:
instance
Pi.mulZeroOneClass
{ι : Type u_1}
{α : ι → Type u_2}
[(i : ι) → MulZeroOneClass (α i)]
:
MulZeroOneClass ((i : ι) → α i)
Equations
- Pi.mulZeroOneClass = MulZeroOneClass.mk ⋯ ⋯
instance
Pi.monoidWithZero
{ι : Type u_1}
{α : ι → Type u_2}
[(i : ι) → MonoidWithZero (α i)]
:
MonoidWithZero ((i : ι) → α i)
Equations
- Pi.monoidWithZero = MonoidWithZero.mk ⋯ ⋯
instance
Pi.commMonoidWithZero
{ι : Type u_1}
{α : ι → Type u_2}
[(i : ι) → CommMonoidWithZero (α i)]
:
CommMonoidWithZero ((i : ι) → α i)
Equations
- Pi.commMonoidWithZero = CommMonoidWithZero.mk ⋯ ⋯
instance
Pi.semigroupWithZero
{ι : Type u_1}
{α : ι → Type u_2}
[(i : ι) → SemigroupWithZero (α i)]
:
SemigroupWithZero ((i : ι) → α i)
Equations
- Pi.semigroupWithZero = SemigroupWithZero.mk ⋯ ⋯