Facts about ordered structures and ordered instances on subgroups #
@[simp]
theorem
abs_mem_iff
{S : Type u_1}
{G : Type u_2}
[AddGroup G]
[LinearOrder G]
:
∀ {x : SetLike S G} [inst : NegMemClass S G] {H : S} {x_1 : G}, |x_1| ∈ H ↔ x_1 ∈ H
@[simp]
Equations
- ⋯ = ⋯
Equations
- ⋯ = ⋯
theorem
Subgroup.NormalizerCondition.normal_of_coatom
{G : Type u_1}
[Group G]
(H : Subgroup G)
(hnc : NormalizerCondition G)
(hmax : IsCoatom H)
:
H.Normal
In a group that satisfies the normalizer condition, every maximal subgroup is normal
theorem
Subgroup.isCoatom_comap_of_surjective
{G : Type u_1}
[Group G]
{H : Type u_2}
[Group H]
{φ : G →* H}
(hφ : Function.Surjective ⇑φ)
{M : Subgroup H}
(hM : IsCoatom M)
:
IsCoatom (Subgroup.comap φ M)
@[instance 75]
instance
AddSubgroupClass.toOrderedAddCommGroup
{G : Type u_1}
{S : Type u_2}
[SetLike S G]
[OrderedAddCommGroup G]
[AddSubgroupClass S G]
(H : S)
:
An additive subgroup of an AddOrderedCommGroup
is an AddOrderedCommGroup
.
Equations
- AddSubgroupClass.toOrderedAddCommGroup H = Function.Injective.orderedAddCommGroup (fun (a : ↥H) => ↑a) ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯
@[instance 75]
instance
SubgroupClass.toOrderedCommGroup
{G : Type u_1}
{S : Type u_2}
[SetLike S G]
[OrderedCommGroup G]
[SubgroupClass S G]
(H : S)
:
A subgroup of an OrderedCommGroup
is an OrderedCommGroup
.
Equations
- SubgroupClass.toOrderedCommGroup H = Function.Injective.orderedCommGroup (fun (a : ↥H) => ↑a) ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯
@[instance 75]
instance
AddSubgroupClass.toLinearOrderedAddCommGroup
{G : Type u_1}
{S : Type u_2}
[SetLike S G]
[LinearOrderedAddCommGroup G]
[AddSubgroupClass S G]
(H : S)
:
An additive subgroup of a LinearOrderedAddCommGroup
is a
LinearOrderedAddCommGroup
.
Equations
- AddSubgroupClass.toLinearOrderedAddCommGroup H = Function.Injective.linearOrderedAddCommGroup (fun (a : ↥H) => ↑a) ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯
@[instance 75]
instance
SubgroupClass.toLinearOrderedCommGroup
{G : Type u_1}
{S : Type u_2}
[SetLike S G]
[LinearOrderedCommGroup G]
[SubgroupClass S G]
(H : S)
:
A subgroup of a LinearOrderedCommGroup
is a LinearOrderedCommGroup
.
Equations
- SubgroupClass.toLinearOrderedCommGroup H = Function.Injective.linearOrderedCommGroup (fun (a : ↥H) => ↑a) ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯
instance
AddSubgroup.toOrderedAddCommGroup
{G : Type u_1}
[OrderedAddCommGroup G]
(H : AddSubgroup G)
:
An AddSubgroup
of an AddOrderedCommGroup
is an AddOrderedCommGroup
.
Equations
- H.toOrderedAddCommGroup = Function.Injective.orderedAddCommGroup (fun (a : ↥H) => ↑a) ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯
A subgroup of an OrderedCommGroup
is an OrderedCommGroup
.
Equations
- H.toOrderedCommGroup = Function.Injective.orderedCommGroup (fun (a : ↥H) => ↑a) ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯
instance
AddSubgroup.toLinearOrderedAddCommGroup
{G : Type u_1}
[LinearOrderedAddCommGroup G]
(H : AddSubgroup G)
:
An AddSubgroup
of a LinearOrderedAddCommGroup
is a
LinearOrderedAddCommGroup
.
Equations
- H.toLinearOrderedAddCommGroup = Function.Injective.linearOrderedAddCommGroup (fun (a : ↥H) => ↑a) ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯
instance
Subgroup.toLinearOrderedCommGroup
{G : Type u_1}
[LinearOrderedCommGroup G]
(H : Subgroup G)
:
A subgroup of a LinearOrderedCommGroup
is a LinearOrderedCommGroup
.
Equations
- H.toLinearOrderedCommGroup = Function.Injective.linearOrderedCommGroup (fun (a : ↥H) => ↑a) ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯
theorem
AddSubsemigroup.strictMono_topEquiv
{G : Type u_1}
[OrderedAddCommMonoid G]
:
StrictMono ⇑AddSubsemigroup.topEquiv
theorem
Subsemigroup.strictMono_topEquiv
{G : Type u_1}
[OrderedCommMonoid G]
:
StrictMono ⇑Subsemigroup.topEquiv
theorem
AddEquiv.strictMono_subsemigroupCongr
{G : Type u_1}
[OrderedAddCommMonoid G]
{S : AddSubsemigroup G}
{T : AddSubsemigroup G}
(h : S = T)
:
theorem
MulEquiv.strictMono_subsemigroupCongr
{G : Type u_1}
[OrderedCommMonoid G]
{S : Subsemigroup G}
{T : Subsemigroup G}
(h : S = T)
:
theorem
AddEquiv.strictMono_symm
{G : Type u_1}
{G' : Type u_2}
[LinearOrderedAddCommMonoid G]
[LinearOrderedAddCommMonoid G']
{e : G ≃+ G'}
(he : StrictMono ⇑e)
:
StrictMono ⇑e.symm
theorem
MulEquiv.strictMono_symm
{G : Type u_1}
{G' : Type u_2}
[LinearOrderedCommMonoid G]
[LinearOrderedCommMonoid G']
{e : G ≃* G'}
(he : StrictMono ⇑e)
:
StrictMono ⇑e.symm