Documentation

Mathlib.Algebra.Group.Ext

Extensionality lemmas for monoid and group structures #

In this file we prove extensionality lemmas for Monoid and higher algebraic structures with one binary operation. Extensionality lemmas for structures that are lower in the hierarchy can be found in Algebra.Group.Defs.

Implementation details #

To get equality of npow etc, we define a monoid homomorphism between two monoid structures on the same type, then apply lemmas like MonoidHom.map_div, MonoidHom.map_pow etc.

To refer to the * operator of a particular instance i, we use (letI := i; HMul.hMul : M → M → M) instead of i.mul (which elaborates to Mul.mul), as the former uses HMul.hMul which is the canonical spelling.

Tags #

monoid, group, extensionality

theorem AddMonoid.ext {M : Type u} ⦃m₁ : AddMonoid M ⦃m₂ : AddMonoid M (h_mul : HAdd.hAdd = HAdd.hAdd) :
m₁ = m₂
theorem Monoid.ext_iff {M : Type u} {m₁ : Monoid M} {m₂ : Monoid M} :
m₁ = m₂ HMul.hMul = HMul.hMul
theorem AddMonoid.ext_iff {M : Type u} {m₁ : AddMonoid M} {m₂ : AddMonoid M} :
m₁ = m₂ HAdd.hAdd = HAdd.hAdd
theorem Monoid.ext {M : Type u} ⦃m₁ : Monoid M ⦃m₂ : Monoid M (h_mul : HMul.hMul = HMul.hMul) :
m₁ = m₂
theorem AddCommMonoid.ext {M : Type u_1} ⦃m₁ : AddCommMonoid M ⦃m₂ : AddCommMonoid M (h_mul : HAdd.hAdd = HAdd.hAdd) :
m₁ = m₂
theorem CommMonoid.ext_iff {M : Type u_1} {m₁ : CommMonoid M} {m₂ : CommMonoid M} :
m₁ = m₂ HMul.hMul = HMul.hMul
theorem AddCommMonoid.ext_iff {M : Type u_1} {m₁ : AddCommMonoid M} {m₂ : AddCommMonoid M} :
m₁ = m₂ HAdd.hAdd = HAdd.hAdd
theorem CommMonoid.ext {M : Type u_1} ⦃m₁ : CommMonoid M ⦃m₂ : CommMonoid M (h_mul : HMul.hMul = HMul.hMul) :
m₁ = m₂
theorem AddLeftCancelMonoid.ext {M : Type u} ⦃m₁ : AddLeftCancelMonoid M ⦃m₂ : AddLeftCancelMonoid M (h_mul : HAdd.hAdd = HAdd.hAdd) :
m₁ = m₂
theorem AddLeftCancelMonoid.ext_iff {M : Type u} {m₁ : AddLeftCancelMonoid M} {m₂ : AddLeftCancelMonoid M} :
m₁ = m₂ HAdd.hAdd = HAdd.hAdd
theorem LeftCancelMonoid.ext_iff {M : Type u} {m₁ : LeftCancelMonoid M} {m₂ : LeftCancelMonoid M} :
m₁ = m₂ HMul.hMul = HMul.hMul
theorem LeftCancelMonoid.ext {M : Type u} ⦃m₁ : LeftCancelMonoid M ⦃m₂ : LeftCancelMonoid M (h_mul : HMul.hMul = HMul.hMul) :
m₁ = m₂
theorem AddRightCancelMonoid.ext {M : Type u} ⦃m₁ : AddRightCancelMonoid M ⦃m₂ : AddRightCancelMonoid M (h_mul : HAdd.hAdd = HAdd.hAdd) :
m₁ = m₂
theorem AddRightCancelMonoid.ext_iff {M : Type u} {m₁ : AddRightCancelMonoid M} {m₂ : AddRightCancelMonoid M} :
m₁ = m₂ HAdd.hAdd = HAdd.hAdd
theorem RightCancelMonoid.ext_iff {M : Type u} {m₁ : RightCancelMonoid M} {m₂ : RightCancelMonoid M} :
m₁ = m₂ HMul.hMul = HMul.hMul
theorem RightCancelMonoid.ext {M : Type u} ⦃m₁ : RightCancelMonoid M ⦃m₂ : RightCancelMonoid M (h_mul : HMul.hMul = HMul.hMul) :
m₁ = m₂
theorem AddCancelMonoid.ext {M : Type u_1} ⦃m₁ : AddCancelMonoid M ⦃m₂ : AddCancelMonoid M (h_mul : HAdd.hAdd = HAdd.hAdd) :
m₁ = m₂
theorem CancelMonoid.ext_iff {M : Type u_1} {m₁ : CancelMonoid M} {m₂ : CancelMonoid M} :
m₁ = m₂ HMul.hMul = HMul.hMul
theorem AddCancelMonoid.ext_iff {M : Type u_1} {m₁ : AddCancelMonoid M} {m₂ : AddCancelMonoid M} :
m₁ = m₂ HAdd.hAdd = HAdd.hAdd
theorem CancelMonoid.ext {M : Type u_1} ⦃m₁ : CancelMonoid M ⦃m₂ : CancelMonoid M (h_mul : HMul.hMul = HMul.hMul) :
m₁ = m₂
theorem AddCancelCommMonoid.ext {M : Type u_1} ⦃m₁ : AddCancelCommMonoid M ⦃m₂ : AddCancelCommMonoid M (h_mul : HAdd.hAdd = HAdd.hAdd) :
m₁ = m₂
theorem CancelCommMonoid.ext_iff {M : Type u_1} {m₁ : CancelCommMonoid M} {m₂ : CancelCommMonoid M} :
m₁ = m₂ HMul.hMul = HMul.hMul
theorem AddCancelCommMonoid.ext_iff {M : Type u_1} {m₁ : AddCancelCommMonoid M} {m₂ : AddCancelCommMonoid M} :
m₁ = m₂ HAdd.hAdd = HAdd.hAdd
theorem CancelCommMonoid.ext {M : Type u_1} ⦃m₁ : CancelCommMonoid M ⦃m₂ : CancelCommMonoid M (h_mul : HMul.hMul = HMul.hMul) :
m₁ = m₂
theorem SubNegMonoid.ext {M : Type u_1} ⦃m₁ : SubNegMonoid M ⦃m₂ : SubNegMonoid M (h_mul : HAdd.hAdd = HAdd.hAdd) (h_inv : Neg.neg = Neg.neg) :
m₁ = m₂
theorem SubNegMonoid.ext_iff {M : Type u_1} {m₁ : SubNegMonoid M} {m₂ : SubNegMonoid M} :
m₁ = m₂ HAdd.hAdd = HAdd.hAdd Neg.neg = Neg.neg
theorem DivInvMonoid.ext_iff {M : Type u_1} {m₁ : DivInvMonoid M} {m₂ : DivInvMonoid M} :
m₁ = m₂ HMul.hMul = HMul.hMul Inv.inv = Inv.inv
theorem DivInvMonoid.ext {M : Type u_1} ⦃m₁ : DivInvMonoid M ⦃m₂ : DivInvMonoid M (h_mul : HMul.hMul = HMul.hMul) (h_inv : Inv.inv = Inv.inv) :
m₁ = m₂
theorem AddGroup.ext {G : Type u_1} ⦃g₁ : AddGroup G ⦃g₂ : AddGroup G (h_mul : Add.add = Add.add) :
g₁ = g₂
theorem AddGroup.ext_iff {G : Type u_1} {g₁ : AddGroup G} {g₂ : AddGroup G} :
g₁ = g₂ Add.add = Add.add
theorem Group.ext_iff {G : Type u_1} {g₁ : Group G} {g₂ : Group G} :
g₁ = g₂ Mul.mul = Mul.mul
theorem Group.ext {G : Type u_1} ⦃g₁ : Group G ⦃g₂ : Group G (h_mul : Mul.mul = Mul.mul) :
g₁ = g₂
theorem AddCommGroup.ext {G : Type u_1} ⦃g₁ : AddCommGroup G ⦃g₂ : AddCommGroup G (h_mul : Add.add = Add.add) :
g₁ = g₂
theorem CommGroup.ext_iff {G : Type u_1} {g₁ : CommGroup G} {g₂ : CommGroup G} :
g₁ = g₂ Mul.mul = Mul.mul
theorem AddCommGroup.ext_iff {G : Type u_1} {g₁ : AddCommGroup G} {g₂ : AddCommGroup G} :
g₁ = g₂ Add.add = Add.add
theorem CommGroup.ext {G : Type u_1} ⦃g₁ : CommGroup G ⦃g₂ : CommGroup G (h_mul : Mul.mul = Mul.mul) :
g₁ = g₂