GCD and LCM operations on multisets #
Main definitions #
Multiset.gcd
- the greatest common denominator of aMultiset
of elements of aGCDMonoid
Multiset.lcm
- the least common multiple of aMultiset
of elements of aGCDMonoid
Implementation notes #
TODO: simplify with a tactic and Data.Multiset.Lattice
Tags #
multiset, gcd
LCM #
def
Multiset.lcm
{α : Type u_1}
[CancelCommMonoidWithZero α]
[NormalizedGCDMonoid α]
(s : Multiset α)
:
α
Least common multiple of a multiset
Equations
- s.lcm = Multiset.fold lcm 1 s
Instances For
@[simp]
theorem
Multiset.lcm_zero
{α : Type u_1}
[CancelCommMonoidWithZero α]
[NormalizedGCDMonoid α]
:
Multiset.lcm 0 = 1
@[simp]
theorem
Multiset.lcm_cons
{α : Type u_1}
[CancelCommMonoidWithZero α]
[NormalizedGCDMonoid α]
(a : α)
(s : Multiset α)
:
@[simp]
theorem
Multiset.lcm_singleton
{α : Type u_1}
[CancelCommMonoidWithZero α]
[NormalizedGCDMonoid α]
{a : α}
:
{a}.lcm = normalize a
@[simp]
theorem
Multiset.lcm_add
{α : Type u_1}
[CancelCommMonoidWithZero α]
[NormalizedGCDMonoid α]
(s₁ : Multiset α)
(s₂ : Multiset α)
:
theorem
Multiset.lcm_dvd
{α : Type u_1}
[CancelCommMonoidWithZero α]
[NormalizedGCDMonoid α]
{s : Multiset α}
{a : α}
:
theorem
Multiset.dvd_lcm
{α : Type u_1}
[CancelCommMonoidWithZero α]
[NormalizedGCDMonoid α]
{s : Multiset α}
{a : α}
(h : a ∈ s)
:
a ∣ s.lcm
theorem
Multiset.lcm_mono
{α : Type u_1}
[CancelCommMonoidWithZero α]
[NormalizedGCDMonoid α]
{s₁ : Multiset α}
{s₂ : Multiset α}
(h : s₁ ⊆ s₂)
:
s₁.lcm ∣ s₂.lcm
@[simp]
theorem
Multiset.normalize_lcm
{α : Type u_1}
[CancelCommMonoidWithZero α]
[NormalizedGCDMonoid α]
(s : Multiset α)
:
normalize s.lcm = s.lcm
@[simp]
theorem
Multiset.lcm_eq_zero_iff
{α : Type u_1}
[CancelCommMonoidWithZero α]
[NormalizedGCDMonoid α]
[Nontrivial α]
(s : Multiset α)
:
@[simp]
theorem
Multiset.lcm_dedup
{α : Type u_1}
[CancelCommMonoidWithZero α]
[NormalizedGCDMonoid α]
[DecidableEq α]
(s : Multiset α)
:
s.dedup.lcm = s.lcm
@[simp]
theorem
Multiset.lcm_ndunion
{α : Type u_1}
[CancelCommMonoidWithZero α]
[NormalizedGCDMonoid α]
[DecidableEq α]
(s₁ : Multiset α)
(s₂ : Multiset α)
:
@[simp]
theorem
Multiset.lcm_union
{α : Type u_1}
[CancelCommMonoidWithZero α]
[NormalizedGCDMonoid α]
[DecidableEq α]
(s₁ : Multiset α)
(s₂ : Multiset α)
:
@[simp]
theorem
Multiset.lcm_ndinsert
{α : Type u_1}
[CancelCommMonoidWithZero α]
[NormalizedGCDMonoid α]
[DecidableEq α]
(a : α)
(s : Multiset α)
:
(Multiset.ndinsert a s).lcm = lcm a s.lcm
GCD #
def
Multiset.gcd
{α : Type u_1}
[CancelCommMonoidWithZero α]
[NormalizedGCDMonoid α]
(s : Multiset α)
:
α
Greatest common divisor of a multiset
Equations
- s.gcd = Multiset.fold gcd 0 s
Instances For
@[simp]
theorem
Multiset.gcd_zero
{α : Type u_1}
[CancelCommMonoidWithZero α]
[NormalizedGCDMonoid α]
:
Multiset.gcd 0 = 0
@[simp]
theorem
Multiset.gcd_cons
{α : Type u_1}
[CancelCommMonoidWithZero α]
[NormalizedGCDMonoid α]
(a : α)
(s : Multiset α)
:
@[simp]
theorem
Multiset.gcd_singleton
{α : Type u_1}
[CancelCommMonoidWithZero α]
[NormalizedGCDMonoid α]
{a : α}
:
{a}.gcd = normalize a
@[simp]
theorem
Multiset.gcd_add
{α : Type u_1}
[CancelCommMonoidWithZero α]
[NormalizedGCDMonoid α]
(s₁ : Multiset α)
(s₂ : Multiset α)
:
theorem
Multiset.dvd_gcd
{α : Type u_1}
[CancelCommMonoidWithZero α]
[NormalizedGCDMonoid α]
{s : Multiset α}
{a : α}
:
theorem
Multiset.gcd_dvd
{α : Type u_1}
[CancelCommMonoidWithZero α]
[NormalizedGCDMonoid α]
{s : Multiset α}
{a : α}
(h : a ∈ s)
:
s.gcd ∣ a
theorem
Multiset.gcd_mono
{α : Type u_1}
[CancelCommMonoidWithZero α]
[NormalizedGCDMonoid α]
{s₁ : Multiset α}
{s₂ : Multiset α}
(h : s₁ ⊆ s₂)
:
s₂.gcd ∣ s₁.gcd
@[simp]
theorem
Multiset.normalize_gcd
{α : Type u_1}
[CancelCommMonoidWithZero α]
[NormalizedGCDMonoid α]
(s : Multiset α)
:
normalize s.gcd = s.gcd
theorem
Multiset.gcd_eq_zero_iff
{α : Type u_1}
[CancelCommMonoidWithZero α]
[NormalizedGCDMonoid α]
(s : Multiset α)
:
theorem
Multiset.gcd_map_mul
{α : Type u_1}
[CancelCommMonoidWithZero α]
[NormalizedGCDMonoid α]
(a : α)
(s : Multiset α)
:
(Multiset.map (fun (x : α) => a * x) s).gcd = normalize a * s.gcd
@[simp]
theorem
Multiset.gcd_dedup
{α : Type u_1}
[CancelCommMonoidWithZero α]
[NormalizedGCDMonoid α]
[DecidableEq α]
(s : Multiset α)
:
s.dedup.gcd = s.gcd
@[simp]
theorem
Multiset.gcd_ndunion
{α : Type u_1}
[CancelCommMonoidWithZero α]
[NormalizedGCDMonoid α]
[DecidableEq α]
(s₁ : Multiset α)
(s₂ : Multiset α)
:
@[simp]
theorem
Multiset.gcd_union
{α : Type u_1}
[CancelCommMonoidWithZero α]
[NormalizedGCDMonoid α]
[DecidableEq α]
(s₁ : Multiset α)
(s₂ : Multiset α)
:
@[simp]
theorem
Multiset.gcd_ndinsert
{α : Type u_1}
[CancelCommMonoidWithZero α]
[NormalizedGCDMonoid α]
[DecidableEq α]
(a : α)
(s : Multiset α)
:
(Multiset.ndinsert a s).gcd = gcd a s.gcd
theorem
Multiset.extract_gcd'
{α : Type u_1}
[CancelCommMonoidWithZero α]
[NormalizedGCDMonoid α]
(s : Multiset α)
(t : Multiset α)
(hs : ∃ x ∈ s, x ≠ 0)
(ht : s = Multiset.map (fun (x : α) => s.gcd * x) t)
:
t.gcd = 1
theorem
Multiset.extract_gcd
{α : Type u_1}
[CancelCommMonoidWithZero α]
[NormalizedGCDMonoid α]
(s : Multiset α)
(hs : s ≠ 0)
: