Divisibility and units #
Main definition #
IsRelPrime x y
: thatx
andy
are relatively prime, defined to mean that the only common divisors ofx
andy
are the units.
In a commutative monoid, an element a
divides an element b
iff a
divides all left
associates of b
.
In a commutative monoid, an element a
divides an element b
iff all
left associates of a
divide b
.
@[simp]
In a commutative monoid, an element a
divides an element b
iff a
divides all left
associates of b
.
@[simp]
In a commutative monoid, an element a
divides an element b
iff all
left associates of a
divide b
.
theorem
isUnit_of_dvd_unit
{α : Type u_1}
[CommMonoid α]
{x : α}
{y : α}
(xy : x ∣ y)
(hu : IsUnit y)
:
IsUnit x
theorem
not_isUnit_of_not_isUnit_dvd
{α : Type u_1}
[CommMonoid α]
{a : α}
{b : α}
(ha : ¬IsUnit a)
(hb : a ∣ b)
:
x
and y
are relatively prime if every common divisor is a unit.
Equations
- IsRelPrime x y = ∀ ⦃d : α⦄, d ∣ x → d ∣ y → IsUnit d
Instances For
theorem
IsRelPrime.symm
{α : Type u_1}
[CommMonoid α]
{x : α}
{y : α}
(H : IsRelPrime x y)
:
IsRelPrime y x
theorem
isRelPrime_comm
{α : Type u_1}
[CommMonoid α]
{x : α}
{y : α}
:
IsRelPrime x y ↔ IsRelPrime y x
theorem
IsUnit.isRelPrime_left
{α : Type u_1}
[CommMonoid α]
{x : α}
{y : α}
(h : IsUnit x)
:
IsRelPrime x y
theorem
IsUnit.isRelPrime_right
{α : Type u_1}
[CommMonoid α]
{x : α}
{y : α}
(h : IsUnit y)
:
IsRelPrime x y
theorem
IsRelPrime.of_mul_left_left
{α : Type u_1}
[CommMonoid α]
{x : α}
{y : α}
{z : α}
(H : IsRelPrime (x * y) z)
:
IsRelPrime x z
theorem
IsRelPrime.of_mul_left_right
{α : Type u_1}
[CommMonoid α]
{x : α}
{y : α}
{z : α}
(H : IsRelPrime (x * y) z)
:
IsRelPrime y z
theorem
IsRelPrime.of_mul_right_left
{α : Type u_1}
[CommMonoid α]
{x : α}
{y : α}
{z : α}
(H : IsRelPrime x (y * z))
:
IsRelPrime x y
theorem
IsRelPrime.of_mul_right_right
{α : Type u_1}
[CommMonoid α]
{x : α}
{y : α}
{z : α}
(H : IsRelPrime x (y * z))
:
IsRelPrime x z
theorem
IsRelPrime.of_dvd_left
{α : Type u_1}
[CommMonoid α]
{x : α}
{y : α}
{z : α}
(h : IsRelPrime y z)
(dvd : x ∣ y)
:
IsRelPrime x z
theorem
IsRelPrime.of_dvd_right
{α : Type u_1}
[CommMonoid α]
{x : α}
{y : α}
{z : α}
(h : IsRelPrime z y)
(dvd : x ∣ y)
:
IsRelPrime z x
theorem
IsRelPrime.isUnit_of_dvd
{α : Type u_1}
[CommMonoid α]
{x : α}
{y : α}
(H : IsRelPrime x y)
(d : x ∣ y)
:
IsUnit x
theorem
isRelPrime_mul_unit_left_left
{α : Type u_1}
[CommMonoid α]
{x : α}
{y : α}
{z : α}
(hu : IsUnit x)
:
IsRelPrime (x * y) z ↔ IsRelPrime y z
theorem
isRelPrime_mul_unit_left_right
{α : Type u_1}
[CommMonoid α]
{x : α}
{y : α}
{z : α}
(hu : IsUnit x)
:
IsRelPrime y (x * z) ↔ IsRelPrime y z
theorem
isRelPrime_mul_unit_left
{α : Type u_1}
[CommMonoid α]
{x : α}
{y : α}
{z : α}
(hu : IsUnit x)
:
IsRelPrime (x * y) (x * z) ↔ IsRelPrime y z
theorem
isRelPrime_mul_unit_right_left
{α : Type u_1}
[CommMonoid α]
{x : α}
{y : α}
{z : α}
(hu : IsUnit x)
:
IsRelPrime (y * x) z ↔ IsRelPrime y z
theorem
isRelPrime_mul_unit_right_right
{α : Type u_1}
[CommMonoid α]
{x : α}
{y : α}
{z : α}
(hu : IsUnit x)
:
IsRelPrime y (z * x) ↔ IsRelPrime y z
theorem
isRelPrime_mul_unit_right
{α : Type u_1}
[CommMonoid α]
{x : α}
{y : α}
{z : α}
(hu : IsUnit x)
:
IsRelPrime (y * x) (z * x) ↔ IsRelPrime y z
theorem
IsRelPrime.dvd_of_dvd_mul_right_of_isPrimal
{α : Type u_1}
[CommMonoid α]
{x : α}
{y : α}
{z : α}
(H1 : IsRelPrime x z)
(H2 : x ∣ y * z)
(h : IsPrimal x)
:
x ∣ y
theorem
IsRelPrime.dvd_of_dvd_mul_left_of_isPrimal
{α : Type u_1}
[CommMonoid α]
{x : α}
{y : α}
{z : α}
(H1 : IsRelPrime x y)
(H2 : x ∣ y * z)
(h : IsPrimal x)
:
x ∣ z
theorem
IsRelPrime.mul_dvd_of_right_isPrimal
{α : Type u_1}
[CommMonoid α]
{x : α}
{y : α}
{z : α}
(H : IsRelPrime x y)
(H1 : x ∣ z)
(H2 : y ∣ z)
(hy : IsPrimal y)
:
theorem
IsRelPrime.mul_dvd_of_left_isPrimal
{α : Type u_1}
[CommMonoid α]
{x : α}
{y : α}
{z : α}
(H : IsRelPrime x y)
(H1 : x ∣ z)
(H2 : y ∣ z)
(hx : IsPrimal x)
:
IsRelPrime
enjoys desirable properties in a decomposition monoid.
See Lemma 6.3 in On properties of square-free elements in commutative cancellative monoids,
https://doi.org/10.1007/s00233-019-10022-3.
theorem
IsRelPrime.dvd_of_dvd_mul_right
{α : Type u_1}
[CommMonoid α]
{x : α}
{y : α}
{z : α}
[DecompositionMonoid α]
(H1 : IsRelPrime x z)
(H2 : x ∣ y * z)
:
x ∣ y
theorem
IsRelPrime.dvd_of_dvd_mul_left
{α : Type u_1}
[CommMonoid α]
{x : α}
{y : α}
{z : α}
[DecompositionMonoid α]
(H1 : IsRelPrime x y)
(H2 : x ∣ y * z)
:
x ∣ z
theorem
IsRelPrime.mul_left
{α : Type u_1}
[CommMonoid α]
{x : α}
{y : α}
{z : α}
[DecompositionMonoid α]
(H1 : IsRelPrime x z)
(H2 : IsRelPrime y z)
:
IsRelPrime (x * y) z
theorem
IsRelPrime.mul_right
{α : Type u_1}
[CommMonoid α]
{x : α}
{y : α}
{z : α}
[DecompositionMonoid α]
(H1 : IsRelPrime x y)
(H2 : IsRelPrime x z)
:
IsRelPrime x (y * z)
theorem
IsRelPrime.mul_left_iff
{α : Type u_1}
[CommMonoid α]
{x : α}
{y : α}
{z : α}
[DecompositionMonoid α]
:
IsRelPrime (x * y) z ↔ IsRelPrime x z ∧ IsRelPrime y z
theorem
IsRelPrime.mul_right_iff
{α : Type u_1}
[CommMonoid α]
{x : α}
{y : α}
{z : α}
[DecompositionMonoid α]
:
IsRelPrime x (y * z) ↔ IsRelPrime x y ∧ IsRelPrime x z
theorem
IsRelPrime.mul_dvd
{α : Type u_1}
[CommMonoid α]
{x : α}
{y : α}
{z : α}
[DecompositionMonoid α]
(H : IsRelPrime x y)
(H1 : x ∣ z)
(H2 : y ∣ z)
: