The forget functor is corepresentable #
It is shown that the forget functor AddCommGrp.{u} ⥤ Type u
is corepresentable
by ULift ℤ
. Similar results are obtained for the variants CommGrp
, AddGrp
and Grp
.
The equivalence (β →* γ) ≃ (α →* γ)
obtained by precomposition with
a multiplicative equivalence e : α ≃* β
.
Equations
- MonoidHom.precompEquiv e γ = { toFun := fun (f : β →* γ) => f.comp ↑e, invFun := fun (g : α →* γ) => g.comp ↑e.symm, left_inv := ⋯, right_inv := ⋯ }
Instances For
The equivalence (Multiplicative ℤ →* α) ≃ α
for any group α
.
Equations
- MonoidHom.fromMultiplicativeIntEquiv α = { toFun := fun (φ : Multiplicative ℤ →* α) => φ (Multiplicative.ofAdd 1), invFun := fun (x : α) => (zpowersHom α) x, left_inv := ⋯, right_inv := ⋯ }
Instances For
The equivalence (ULift (Multiplicative ℤ) →* α) ≃ α
for any group α
.
Equations
- MonoidHom.fromULiftMultiplicativeIntEquiv α = (MonoidHom.precompEquiv MulEquiv.ulift.symm α).trans (MonoidHom.fromMultiplicativeIntEquiv α)
Instances For
The equivalence (β →+ γ) ≃ (α →+ γ)
obtained by precomposition with
an additive equivalence e : α ≃+ β
.
Equations
- AddMonoidHom.precompEquiv e γ = { toFun := fun (f : β →+ γ) => f.comp ↑e, invFun := fun (g : α →+ γ) => g.comp ↑e.symm, left_inv := ⋯, right_inv := ⋯ }
Instances For
The equivalence (ℤ →+ α) ≃ α
for any additive group α
.
Equations
- AddMonoidHom.fromIntEquiv α = { toFun := fun (φ : ℤ →+ α) => φ 1, invFun := fun (x : α) => (zmultiplesHom α) x, left_inv := ⋯, right_inv := ⋯ }
Instances For
The equivalence (ULift ℤ →+ α) ≃ α
for any additive group α
.
Equations
- AddMonoidHom.fromULiftIntEquiv α = (AddMonoidHom.precompEquiv AddEquiv.ulift.symm α).trans (AddMonoidHom.fromIntEquiv α)
Instances For
The forget functor Grp.{u} ⥤ Type u
is corepresentable.
Equations
Instances For
The forget functor CommGrp.{u} ⥤ Type u
is corepresentable.
Equations
Instances For
The forget functor AddGrp.{u} ⥤ Type u
is corepresentable.
Equations
Instances For
The forget functor AddCommGrp.{u} ⥤ Type u
is corepresentable.