Sums in WithTop
#
This file proves results about finite sums over monoids extended by a bottom or top element.
@[simp]
theorem
WithTop.coe_sum
{ι : Type u_1}
{α : Type u_2}
[AddCommMonoid α]
(s : Finset ι)
(f : ι → α)
:
↑(∑ i ∈ s, f i) = ∑ i ∈ s, ↑(f i)
@[deprecated WithTop.sum_eq_top]
theorem
WithTop.sum_eq_top_iff
{ι : Type u_1}
{α : Type u_2}
[AddCommMonoid α]
{s : Finset ι}
{f : ι → WithTop α}
:
Alias of WithTop.sum_eq_top
.
A sum is infinite iff one term is infinite.
@[deprecated WithTop.sum_lt_top]
theorem
WithTop.sum_lt_top_iff
{ι : Type u_1}
{α : Type u_2}
[AddCommMonoid α]
{s : Finset ι}
{f : ι → WithTop α}
[LT α]
:
Alias of WithTop.sum_lt_top
.
A sum is finite iff all terms are finite.
theorem
WithTop.prod_ne_top
{ι : Type u_1}
{α : Type u_2}
[CommMonoidWithZero α]
[NoZeroDivisors α]
[Nontrivial α]
[DecidableEq α]
{s : Finset ι}
{f : ι → WithTop α}
(h : ∀ i ∈ s, f i ≠ ⊤)
:
A product of finite terms is finite.
theorem
WithTop.prod_lt_top
{ι : Type u_1}
{α : Type u_2}
[CommMonoidWithZero α]
[NoZeroDivisors α]
[Nontrivial α]
[DecidableEq α]
{s : Finset ι}
{f : ι → WithTop α}
[LT α]
(h : ∀ i ∈ s, f i < ⊤)
:
A product of finite terms is finite.
@[simp]
theorem
WithBot.coe_sum
{ι : Type u_1}
{α : Type u_2}
[AddCommMonoid α]
(s : Finset ι)
(f : ι → α)
:
↑(∑ i ∈ s, f i) = ∑ i ∈ s, ↑(f i)
theorem
WithBot.prod_ne_bot
{ι : Type u_1}
{α : Type u_2}
[CommMonoidWithZero α]
[NoZeroDivisors α]
[Nontrivial α]
[DecidableEq α]
{s : Finset ι}
{f : ι → WithBot α}
(h : ∀ i ∈ s, f i ≠ ⊥)
:
A product of finite terms is finite.
theorem
WithBot.bot_lt_prod
{ι : Type u_1}
{α : Type u_2}
[CommMonoidWithZero α]
[NoZeroDivisors α]
[Nontrivial α]
[DecidableEq α]
{s : Finset ι}
{f : ι → WithBot α}
[LT α]
(h : ∀ i ∈ s, ⊥ < f i)
:
A product of finite terms is finite.
@[deprecated WithBot.bot_lt_prod]
theorem
WithBot.prod_lt_bot
{ι : Type u_1}
{α : Type u_2}
[CommMonoidWithZero α]
[NoZeroDivisors α]
[Nontrivial α]
[DecidableEq α]
[LT α]
{s : Finset ι}
{f : ι → WithBot α}
(h : ∀ i ∈ s, f i ≠ ⊥)
:
A product of finite terms is finite.