Big operators for NatAntidiagonal
#
This file contains theorems relevant to big operators over Finset.NatAntidiagonal
.
theorem
Finset.Nat.prod_antidiagonal_succ
{M : Type u_1}
[CommMonoid M]
{n : ℕ}
{f : ℕ × ℕ → M}
:
∏ p ∈ Finset.antidiagonal (n + 1), f p = f (0, n + 1) * ∏ p ∈ Finset.antidiagonal n, f (p.1 + 1, p.2)
theorem
Finset.Nat.sum_antidiagonal_succ
{N : Type u_2}
[AddCommMonoid N]
{n : ℕ}
{f : ℕ × ℕ → N}
:
∑ p ∈ Finset.antidiagonal (n + 1), f p = f (0, n + 1) + ∑ p ∈ Finset.antidiagonal n, f (p.1 + 1, p.2)
theorem
Finset.Nat.sum_antidiagonal_swap
{M : Type u_1}
[AddCommMonoid M]
{n : ℕ}
{f : ℕ × ℕ → M}
:
∑ p ∈ Finset.antidiagonal n, f p.swap = ∑ p ∈ Finset.antidiagonal n, f p
theorem
Finset.Nat.prod_antidiagonal_swap
{M : Type u_1}
[CommMonoid M]
{n : ℕ}
{f : ℕ × ℕ → M}
:
∏ p ∈ Finset.antidiagonal n, f p.swap = ∏ p ∈ Finset.antidiagonal n, f p
theorem
Finset.Nat.prod_antidiagonal_succ'
{M : Type u_1}
[CommMonoid M]
{n : ℕ}
{f : ℕ × ℕ → M}
:
∏ p ∈ Finset.antidiagonal (n + 1), f p = f (n + 1, 0) * ∏ p ∈ Finset.antidiagonal n, f (p.1, p.2 + 1)
theorem
Finset.Nat.sum_antidiagonal_succ'
{N : Type u_2}
[AddCommMonoid N]
{n : ℕ}
{f : ℕ × ℕ → N}
:
∑ p ∈ Finset.antidiagonal (n + 1), f p = f (n + 1, 0) + ∑ p ∈ Finset.antidiagonal n, f (p.1, p.2 + 1)
theorem
Finset.Nat.sum_antidiagonal_subst
{M : Type u_1}
[AddCommMonoid M]
{n : ℕ}
{f : ℕ × ℕ → ℕ → M}
:
∑ p ∈ Finset.antidiagonal n, f p n = ∑ p ∈ Finset.antidiagonal n, f p (p.1 + p.2)
theorem
Finset.Nat.prod_antidiagonal_subst
{M : Type u_1}
[CommMonoid M]
{n : ℕ}
{f : ℕ × ℕ → ℕ → M}
:
∏ p ∈ Finset.antidiagonal n, f p n = ∏ p ∈ Finset.antidiagonal n, f p (p.1 + p.2)
theorem
Finset.Nat.sum_antidiagonal_eq_sum_range_succ_mk
{M : Type u_3}
[AddCommMonoid M]
(f : ℕ × ℕ → M)
(n : ℕ)
:
∑ ij ∈ Finset.antidiagonal n, f ij = ∑ k ∈ Finset.range n.succ, f (k, n - k)
theorem
Finset.Nat.prod_antidiagonal_eq_prod_range_succ_mk
{M : Type u_3}
[CommMonoid M]
(f : ℕ × ℕ → M)
(n : ℕ)
:
∏ ij ∈ Finset.antidiagonal n, f ij = ∏ k ∈ Finset.range n.succ, f (k, n - k)
theorem
Finset.Nat.sum_antidiagonal_eq_sum_range_succ
{M : Type u_3}
[AddCommMonoid M]
(f : ℕ → ℕ → M)
(n : ℕ)
:
∑ ij ∈ Finset.antidiagonal n, f ij.1 ij.2 = ∑ k ∈ Finset.range n.succ, f k (n - k)
This lemma matches more generally than
Finset.Nat.sum_antidiagonal_eq_sum_range_succ_mk
when using rw ←
.
theorem
Finset.Nat.prod_antidiagonal_eq_prod_range_succ
{M : Type u_3}
[CommMonoid M]
(f : ℕ → ℕ → M)
(n : ℕ)
:
∏ ij ∈ Finset.antidiagonal n, f ij.1 ij.2 = ∏ k ∈ Finset.range n.succ, f k (n - k)
This lemma matches more generally than Finset.Nat.prod_antidiagonal_eq_prod_range_succ_mk
when
using rw ←
.