- set : Lean.PersistentHashMap α Unit
Instances For
@[reducible, inline]
Equations
Instances For
@[inline]
Equations
- Lean.PersistentHashSet.empty = { set := Lean.PersistentHashMap.empty }
Instances For
Equations
- Lean.PersistentHashSet.instInhabited = { default := Lean.PersistentHashSet.empty }
Equations
- Lean.PersistentHashSet.instEmptyCollection = { emptyCollection := Lean.PersistentHashSet.empty }
@[inline]
def
Lean.PersistentHashSet.isEmpty
{α : Type u_1}
:
{x : BEq α} → {x_1 : Hashable α} → Lean.PersistentHashSet α → Bool
Equations
- s.isEmpty = s.set.isEmpty
Instances For
@[inline]
def
Lean.PersistentHashSet.insert
{α : Type u_1}
:
{x : BEq α} → {x_1 : Hashable α} → Lean.PersistentHashSet α → α → Lean.PersistentHashSet α
Instances For
@[inline]
def
Lean.PersistentHashSet.erase
{α : Type u_1}
:
{x : BEq α} → {x_1 : Hashable α} → Lean.PersistentHashSet α → α → Lean.PersistentHashSet α
Equations
- s.erase a = { set := s.set.erase a }
Instances For
@[inline]
def
Lean.PersistentHashSet.find?
{α : Type u_1}
:
{x : BEq α} → {x_1 : Hashable α} → Lean.PersistentHashSet α → α → Option α
Instances For
@[inline]
def
Lean.PersistentHashSet.contains
{α : Type u_1}
:
{x : BEq α} → {x_1 : Hashable α} → Lean.PersistentHashSet α → α → Bool
Equations
- s.contains a = s.set.contains a
Instances For
@[inline]
Equations
- Lean.PersistentHashSet.foldM f init s = s.set.foldlM (fun (d : β) (a : α) (x : Unit) => f d a) init
Instances For
@[inline]
def
Lean.PersistentHashSet.fold
{α : Type u_1}
:
{x : BEq α} → {x_1 : Hashable α} → {β : Type v} → (β → α → β) → β → Lean.PersistentHashSet α → β
Equations
- Lean.PersistentHashSet.fold f init s = (Lean.PersistentHashSet.foldM f init s).run