Monadic operations #
mapM #
Alternate (non-tail-recursive) form of mapM for proofs.
Equations
- List.mapM' f [] = pure []
- List.mapM' f (a :: l) = do let __do_lift ← f a let __do_lift_1 ← List.mapM' f l pure (__do_lift :: __do_lift_1)
Instances For
@[simp]
theorem
List.mapM'_nil
{m : Type u_1 → Type u_2}
{α : Type u_3}
{β : Type u_1}
[Monad m]
{f : α → m β}
:
List.mapM' f [] = pure []
@[simp]
theorem
List.mapM'_cons
{m : Type u_1 → Type u_2}
{α : Type u_3}
{β : Type u_1}
{a : α}
{l : List α}
[Monad m]
{f : α → m β}
:
List.mapM' f (a :: l) = do
let __do_lift ← f a
let __do_lift_1 ← List.mapM' f l
pure (__do_lift :: __do_lift_1)
theorem
List.mapM'_eq_mapM
{m : Type u_1 → Type u_2}
{α : Type u_3}
{β : Type u_1}
[Monad m]
[LawfulMonad m]
(f : α → m β)
(l : List α)
:
List.mapM' f l = List.mapM f l
theorem
List.mapM'_eq_mapM.go
{m : Type u_1 → Type u_2}
{α : Type u_3}
{β : Type u_1}
[Monad m]
[LawfulMonad m]
(f : α → m β)
(l : List α)
(acc : List β)
:
List.mapM.loop f l acc = do
let __do_lift ← List.mapM' f l
pure (acc.reverse ++ __do_lift)
theorem
List.foldlM_cons_eq_append
{m : Type u_1 → Type u_2}
{α : Type u_3}
{β : Type u_1}
[Monad m]
[LawfulMonad m]
(f : α → m β)
(as : List α)
(b : β)
(bs : List β)
:
Auxiliary lemma for mapM_eq_reverse_foldlM_cons
.
forM #
@[simp]
theorem
List.forM_nil'
{m : Type u_1 → Type u_2}
{α : Type u_3}
{f : α → m PUnit}
[Monad m]
:
[].forM f = pure PUnit.unit