Documentation

Init.Data.List.Monadic

Lemmas about List.mapM and List.forM. #

Monadic operations #

mapM #

def List.mapM' {m : Type u_1 → Type u_2} {α : Type u_3} {β : Type u_1} [Monad m] (f : αm β) :
List αm (List β)

Alternate (non-tail-recursive) form of mapM for proofs.

Equations
Instances For
    @[simp]
    theorem List.mapM'_nil {m : Type u_1 → Type u_2} {α : Type u_3} {β : Type u_1} [Monad m] {f : αm β} :
    List.mapM' f [] = pure []
    @[simp]
    theorem List.mapM'_cons {m : Type u_1 → Type u_2} {α : Type u_3} {β : Type u_1} {a : α} {l : List α} [Monad m] {f : αm β} :
    List.mapM' f (a :: l) = do let __do_liftf a let __do_lift_1List.mapM' f l pure (__do_lift :: __do_lift_1)
    theorem List.mapM'_eq_mapM {m : Type u_1 → Type u_2} {α : Type u_3} {β : Type u_1} [Monad m] [LawfulMonad m] (f : αm β) (l : List α) :
    theorem List.mapM'_eq_mapM.go {m : Type u_1 → Type u_2} {α : Type u_3} {β : Type u_1} [Monad m] [LawfulMonad m] (f : αm β) (l : List α) (acc : List β) :
    List.mapM.loop f l acc = do let __do_liftList.mapM' f l pure (acc.reverse ++ __do_lift)
    @[simp]
    theorem List.mapM_nil {m : Type u_1 → Type u_2} {α : Type u_3} {β : Type u_1} [Monad m] (f : αm β) :
    List.mapM f [] = pure []
    @[simp]
    theorem List.mapM_cons {m : Type u_1 → Type u_2} {α : Type u_3} {β : Type u_1} {a : α} {l : List α} [Monad m] [LawfulMonad m] (f : αm β) :
    List.mapM f (a :: l) = do let __do_liftf a let __do_lift_1List.mapM f l pure (__do_lift :: __do_lift_1)
    @[simp]
    theorem List.mapM_append {m : Type u_1 → Type u_2} {α : Type u_3} {β : Type u_1} [Monad m] [LawfulMonad m] (f : αm β) {l₁ : List α} {l₂ : List α} :
    List.mapM f (l₁ ++ l₂) = do let __do_liftList.mapM f l₁ let __do_lift_1List.mapM f l₂ pure (__do_lift ++ __do_lift_1)
    theorem List.foldlM_cons_eq_append {m : Type u_1 → Type u_2} {α : Type u_3} {β : Type u_1} [Monad m] [LawfulMonad m] (f : αm β) (as : List α) (b : β) (bs : List β) :
    List.foldlM (fun (acc : List β) (a : α) => do let __do_liftf a pure (__do_lift :: acc)) (b :: bs) as = (fun (x : List β) => x ++ b :: bs) <$> List.foldlM (fun (acc : List β) (a : α) => do let __do_liftf a pure (__do_lift :: acc)) [] as

    Auxiliary lemma for mapM_eq_reverse_foldlM_cons.

    theorem List.mapM_eq_reverse_foldlM_cons {m : Type u_1 → Type u_2} {α : Type u_3} {β : Type u_1} [Monad m] [LawfulMonad m] (f : αm β) (l : List α) :
    List.mapM f l = List.reverse <$> List.foldlM (fun (acc : List β) (a : α) => do let __do_liftf a pure (__do_lift :: acc)) [] l

    forM #

    @[simp]
    theorem List.forM_nil' {m : Type u_1 → Type u_2} {α : Type u_3} {f : αm PUnit} [Monad m] :
    [].forM f = pure PUnit.unit
    @[simp]
    theorem List.forM_cons' {m : Type u_1 → Type u_2} :
    ∀ {α : Type u_3} {a : α} {as : List α} {f : αm PUnit} [inst : Monad m], (a :: as).forM f = do f a as.forM f
    @[simp]
    theorem List.forM_append {m : Type u_1 → Type u_2} {α : Type u_3} [Monad m] [LawfulMonad m] (l₁ : List α) (l₂ : List α) (f : αm PUnit) :
    (l₁ ++ l₂).forM f = do l₁.forM f l₂.forM f

    allM #

    theorem List.allM_eq_not_anyM_not {m : TypeType u_1} {α : Type u_2} [Monad m] [LawfulMonad m] (p : αm Bool) (as : List α) :
    List.allM p as = (fun (x : Bool) => !x) <$> List.anyM (fun (x : α) => (fun (x : Bool) => !x) <$> p x) as