Documentation

Init.Data.Int.Gcd

Definition and lemmas for gcd and lcm over Int

gcd #

def Int.gcd (m : Int) (n : Int) :

Computes the greatest common divisor of two integers, as a Nat.

Equations
  • m.gcd n = m.natAbs.gcd n.natAbs
Instances For
    theorem Int.gcd_dvd_left {a : Int} {b : Int} :
    (a.gcd b) a
    theorem Int.gcd_dvd_right {a : Int} {b : Int} :
    (a.gcd b) b
    @[simp]
    theorem Int.one_gcd {a : Int} :
    Int.gcd 1 a = 1
    @[simp]
    theorem Int.gcd_one {a : Int} :
    a.gcd 1 = 1
    @[simp]
    theorem Int.neg_gcd {a : Int} {b : Int} :
    (-a).gcd b = a.gcd b
    @[simp]
    theorem Int.gcd_neg {a : Int} {b : Int} :
    a.gcd (-b) = a.gcd b

    lcm #

    def Int.lcm (m : Int) (n : Int) :

    Computes the least common multiple of two integers, as a Nat.

    Equations
    • m.lcm n = m.natAbs.lcm n.natAbs
    Instances For
      theorem Int.lcm_ne_zero {m : Int} {n : Int} (hm : m 0) (hn : n 0) :
      m.lcm n 0
      theorem Int.dvd_lcm_left {a : Int} {b : Int} :
      a (a.lcm b)
      theorem Int.dvd_lcm_right {a : Int} {b : Int} :
      b (a.lcm b)
      @[simp]
      theorem Int.lcm_self {a : Int} :
      a.lcm a = a.natAbs