Documentation

Mathlib.Topology.LocallyConstant.Basic

Locally constant functions #

This file sets up the theory of locally constant function from a topological space to a type.

Main definitions and constructions #

def IsLocallyConstant {X : Type u_1} {Y : Type u_2} [TopologicalSpace X] (f : XY) :

A function between topological spaces is locally constant if the preimage of any set is open.

Equations
theorem IsLocallyConstant.tfae {X : Type u_1} {Y : Type u_2} [TopologicalSpace X] (f : XY) :
[IsLocallyConstant f, ∀ (x : X), ∀ᶠ (x' : X) in nhds x, f x' = f x, ∀ (x : X), IsOpen {x' : X | f x' = f x}, ∀ (y : Y), IsOpen (f ⁻¹' {y}), ∀ (x : X), ∃ (U : Set X), IsOpen U x U x'U, f x' = f x].TFAE
theorem IsLocallyConstant.isOpen_fiber {X : Type u_1} {Y : Type u_2} [TopologicalSpace X] {f : XY} (hf : IsLocallyConstant f) (y : Y) :
IsOpen {x : X | f x = y}
theorem IsLocallyConstant.isClosed_fiber {X : Type u_1} {Y : Type u_2} [TopologicalSpace X] {f : XY} (hf : IsLocallyConstant f) (y : Y) :
IsClosed {x : X | f x = y}
theorem IsLocallyConstant.isClopen_fiber {X : Type u_1} {Y : Type u_2} [TopologicalSpace X] {f : XY} (hf : IsLocallyConstant f) (y : Y) :
IsClopen {x : X | f x = y}
theorem IsLocallyConstant.iff_exists_open {X : Type u_1} {Y : Type u_2} [TopologicalSpace X] (f : XY) :
IsLocallyConstant f ∀ (x : X), ∃ (U : Set X), IsOpen U x U x'U, f x' = f x
theorem IsLocallyConstant.iff_eventually_eq {X : Type u_1} {Y : Type u_2} [TopologicalSpace X] (f : XY) :
IsLocallyConstant f ∀ (x : X), ∀ᶠ (y : X) in nhds x, f y = f x
theorem IsLocallyConstant.exists_open {X : Type u_1} {Y : Type u_2} [TopologicalSpace X] {f : XY} (hf : IsLocallyConstant f) (x : X) :
∃ (U : Set X), IsOpen U x U x'U, f x' = f x
theorem IsLocallyConstant.eventually_eq {X : Type u_1} {Y : Type u_2} [TopologicalSpace X] {f : XY} (hf : IsLocallyConstant f) (x : X) :
∀ᶠ (y : X) in nhds x, f y = f x
theorem IsLocallyConstant.iff_isOpen_fiber_apply {X : Type u_1} {Y : Type u_2} [TopologicalSpace X] {f : XY} :
IsLocallyConstant f ∀ (x : X), IsOpen (f ⁻¹' {f x})
theorem IsLocallyConstant.iff_isOpen_fiber {X : Type u_1} {Y : Type u_2} [TopologicalSpace X] {f : XY} :
IsLocallyConstant f ∀ (y : Y), IsOpen (f ⁻¹' {y})
theorem IsLocallyConstant.continuous {X : Type u_1} {Y : Type u_2} [TopologicalSpace X] [TopologicalSpace Y] {f : XY} (hf : IsLocallyConstant f) :
theorem IsLocallyConstant.of_constant {X : Type u_1} {Y : Type u_2} [TopologicalSpace X] (f : XY) (h : ∀ (x y : X), f x = f y) :
theorem IsLocallyConstant.comp {X : Type u_1} {Y : Type u_2} {Z : Type u_3} [TopologicalSpace X] {f : XY} (hf : IsLocallyConstant f) (g : YZ) :
theorem IsLocallyConstant.prodMk {X : Type u_1} {Y : Type u_2} [TopologicalSpace X] {Y' : Type u_5} {f : XY} {f' : XY'} (hf : IsLocallyConstant f) (hf' : IsLocallyConstant f') :
IsLocallyConstant fun (x : X) => (f x, f' x)
@[deprecated IsLocallyConstant.prodMk (since := "2025-03-10")]
theorem IsLocallyConstant.prod_mk {X : Type u_1} {Y : Type u_2} [TopologicalSpace X] {Y' : Type u_5} {f : XY} {f' : XY'} (hf : IsLocallyConstant f) (hf' : IsLocallyConstant f') :
IsLocallyConstant fun (x : X) => (f x, f' x)

Alias of IsLocallyConstant.prodMk.

theorem IsLocallyConstant.comp₂ {X : Type u_1} [TopologicalSpace X] {Y₁ : Type u_5} {Y₂ : Type u_6} {Z : Type u_7} {f : XY₁} {g : XY₂} (hf : IsLocallyConstant f) (hg : IsLocallyConstant g) (h : Y₁Y₂Z) :
IsLocallyConstant fun (x : X) => h (f x) (g x)
theorem IsLocallyConstant.comp_continuous {X : Type u_1} {Y : Type u_2} {Z : Type u_3} [TopologicalSpace X] [TopologicalSpace Y] {g : YZ} {f : XY} (hg : IsLocallyConstant g) (hf : Continuous f) :
theorem IsLocallyConstant.apply_eq_of_isPreconnected {X : Type u_1} {Y : Type u_2} [TopologicalSpace X] {f : XY} (hf : IsLocallyConstant f) {s : Set X} (hs : IsPreconnected s) {x y : X} (hx : x s) (hy : y s) :
f x = f y

A locally constant function is constant on any preconnected set.

theorem IsLocallyConstant.apply_eq_of_preconnectedSpace {X : Type u_1} {Y : Type u_2} [TopologicalSpace X] [PreconnectedSpace X] {f : XY} (hf : IsLocallyConstant f) (x y : X) :
f x = f y
theorem IsLocallyConstant.eq_const {X : Type u_1} {Y : Type u_2} [TopologicalSpace X] [PreconnectedSpace X] {f : XY} (hf : IsLocallyConstant f) (x : X) :
f = Function.const X (f x)
theorem IsLocallyConstant.exists_eq_const {X : Type u_1} {Y : Type u_2} [TopologicalSpace X] [PreconnectedSpace X] [Nonempty Y] {f : XY} (hf : IsLocallyConstant f) :
∃ (y : Y), f = Function.const X y
theorem IsLocallyConstant.iff_is_const {X : Type u_1} {Y : Type u_2} [TopologicalSpace X] [PreconnectedSpace X] {f : XY} :
IsLocallyConstant f ∀ (x y : X), f x = f y
theorem IsLocallyConstant.range_finite {X : Type u_1} {Y : Type u_2} [TopologicalSpace X] [CompactSpace X] {f : XY} (hf : IsLocallyConstant f) :
theorem IsLocallyConstant.inv {X : Type u_1} {Y : Type u_2} [TopologicalSpace X] [Inv Y] f : XY (hf : IsLocallyConstant f) :
theorem IsLocallyConstant.neg {X : Type u_1} {Y : Type u_2} [TopologicalSpace X] [Neg Y] f : XY (hf : IsLocallyConstant f) :
theorem IsLocallyConstant.mul {X : Type u_1} {Y : Type u_2} [TopologicalSpace X] [Mul Y] f g : XY (hf : IsLocallyConstant f) (hg : IsLocallyConstant g) :
theorem IsLocallyConstant.add {X : Type u_1} {Y : Type u_2} [TopologicalSpace X] [Add Y] f g : XY (hf : IsLocallyConstant f) (hg : IsLocallyConstant g) :
theorem IsLocallyConstant.div {X : Type u_1} {Y : Type u_2} [TopologicalSpace X] [Div Y] f g : XY (hf : IsLocallyConstant f) (hg : IsLocallyConstant g) :
theorem IsLocallyConstant.sub {X : Type u_1} {Y : Type u_2} [TopologicalSpace X] [Sub Y] f g : XY (hf : IsLocallyConstant f) (hg : IsLocallyConstant g) :
theorem IsLocallyConstant.desc {X : Type u_1} [TopologicalSpace X] {α : Type u_5} {β : Type u_6} (f : Xα) (g : αβ) (h : IsLocallyConstant (g f)) (inj : Function.Injective g) :

If a composition of a function f followed by an injection g is locally constant, then the locally constant property descends to f.

theorem IsLocallyConstant.of_constant_on_connected_components {X : Type u_1} {Y : Type u_2} [TopologicalSpace X] [LocallyConnectedSpace X] {f : XY} (h : ∀ (x y : X), y connectedComponent xf y = f x) :
theorem IsLocallyConstant.of_constant_on_connected_clopens {X : Type u_1} {Y : Type u_2} [TopologicalSpace X] [LocallyConnectedSpace X] {f : XY} (h : ∀ (U : Set X), IsConnected UIsClopen UxU, yU, f y = f x) :
theorem IsLocallyConstant.of_constant_on_preconnected_clopens {X : Type u_1} {Y : Type u_2} [TopologicalSpace X] [LocallyConnectedSpace X] {f : XY} (h : ∀ (U : Set X), IsPreconnected UIsClopen UxU, yU, f y = f x) :
structure LocallyConstant (X : Type u_5) (Y : Type u_6) [TopologicalSpace X] :
Type (max u_5 u_6)

A (bundled) locally constant function from a topological space X to a type Y.

  • toFun : XY

    The underlying function.

  • isLocallyConstant : IsLocallyConstant self.toFun

    The map is locally constant.

Equations
instance LocallyConstant.instFunLike {X : Type u_1} {Y : Type u_2} [TopologicalSpace X] :
Equations
def LocallyConstant.Simps.apply {X : Type u_1} {Y : Type u_2} [TopologicalSpace X] (f : LocallyConstant X Y) :
XY

See Note [custom simps projections].

Equations
@[simp]
theorem LocallyConstant.toFun_eq_coe {X : Type u_1} {Y : Type u_2} [TopologicalSpace X] (f : LocallyConstant X Y) :
f.toFun = f
@[simp]
theorem LocallyConstant.coe_mk {X : Type u_1} {Y : Type u_2} [TopologicalSpace X] (f : XY) (h : IsLocallyConstant f) :
{ toFun := f, isLocallyConstant := h } = f
theorem LocallyConstant.congr_fun {X : Type u_1} {Y : Type u_2} [TopologicalSpace X] {f g : LocallyConstant X Y} (h : f = g) (x : X) :
f x = g x
theorem LocallyConstant.congr_arg {X : Type u_1} {Y : Type u_2} [TopologicalSpace X] (f : LocallyConstant X Y) {x y : X} (h : x = y) :
f x = f y
theorem LocallyConstant.coe_inj {X : Type u_1} {Y : Type u_2} [TopologicalSpace X] {f g : LocallyConstant X Y} :
f = g f = g
theorem LocallyConstant.ext {X : Type u_1} {Y : Type u_2} [TopologicalSpace X] f g : LocallyConstant X Y (h : ∀ (x : X), f x = g x) :
f = g
theorem LocallyConstant.ext_iff {X : Type u_1} {Y : Type u_2} [TopologicalSpace X] {f g : LocallyConstant X Y} :
f = g ∀ (x : X), f x = g x

We can turn a locally-constant function into a bundled ContinuousMap.

Equations
  • f = { toFun := f, continuous_toFun := }
@[simp]
theorem LocallyConstant.coe_continuousMap {X : Type u_1} {Y : Type u_2} [TopologicalSpace X] [TopologicalSpace Y] (f : LocallyConstant X Y) :
f = f
def LocallyConstant.const (X : Type u_5) {Y : Type u_6} [TopologicalSpace X] (y : Y) :

The constant locally constant function on X with value y : Y.

Equations
@[simp]
theorem LocallyConstant.coe_const {X : Type u_1} {Y : Type u_2} [TopologicalSpace X] (y : Y) :
(const X y) = Function.const X y
def LocallyConstant.eval {ι : Type u_5} {X : ιType u_6} [(i : ι) → TopologicalSpace (X i)] (i : ι) [DiscreteTopology (X i)] :
LocallyConstant ((i : ι) → X i) (X i)

Evaluation/projection as a locally constant function.

Equations
@[simp]
theorem LocallyConstant.eval_apply {ι : Type u_5} {X : ιType u_6} [(i : ι) → TopologicalSpace (X i)] (i : ι) [DiscreteTopology (X i)] (f : (i : ι) → X i) :
(eval i) f = f i
def LocallyConstant.ofIsClopen {X : Type u_5} [TopologicalSpace X] {U : Set X} [(x : X) → Decidable (x U)] (hU : IsClopen U) :

The locally constant function to Fin 2 associated to a clopen set.

Equations
@[simp]
theorem LocallyConstant.ofIsClopen_fiber_zero {X : Type u_5} [TopologicalSpace X] {U : Set X} [(x : X) → Decidable (x U)] (hU : IsClopen U) :
(ofIsClopen hU) ⁻¹' {0} = U
@[simp]
theorem LocallyConstant.ofIsClopen_fiber_one {X : Type u_5} [TopologicalSpace X] {U : Set X} [(x : X) → Decidable (x U)] (hU : IsClopen U) :
theorem LocallyConstant.apply_eq_of_isPreconnected {X : Type u_1} {Y : Type u_2} [TopologicalSpace X] (f : LocallyConstant X Y) {s : Set X} (hs : IsPreconnected s) {x y : X} (hx : x s) (hy : y s) :
f x = f y
theorem LocallyConstant.eq_const {X : Type u_1} {Y : Type u_2} [TopologicalSpace X] [PreconnectedSpace X] (f : LocallyConstant X Y) (x : X) :
f = const X (f x)
theorem LocallyConstant.exists_eq_const {X : Type u_1} {Y : Type u_2} [TopologicalSpace X] [PreconnectedSpace X] [Nonempty Y] (f : LocallyConstant X Y) :
∃ (y : Y), f = const X y
def LocallyConstant.map {X : Type u_1} {Y : Type u_2} {Z : Type u_3} [TopologicalSpace X] (f : YZ) (g : LocallyConstant X Y) :

Push forward of locally constant maps under any map, by post-composition.

Equations
@[simp]
theorem LocallyConstant.map_apply {X : Type u_1} {Y : Type u_2} {Z : Type u_3} [TopologicalSpace X] (f : YZ) (g : LocallyConstant X Y) :
(map f g) = f g
@[simp]
theorem LocallyConstant.map_id {X : Type u_1} {Y : Type u_2} [TopologicalSpace X] :
@[simp]
theorem LocallyConstant.map_comp {X : Type u_1} [TopologicalSpace X] {Y₁ : Type u_5} {Y₂ : Type u_6} {Y₃ : Type u_7} (g : Y₂Y₃) (f : Y₁Y₂) :
map g map f = map (g f)
def LocallyConstant.flip {X : Type u_5} {α : Type u_6} {β : Type u_7} [TopologicalSpace X] (f : LocallyConstant X (αβ)) (a : α) :

Given a locally constant function to α → β, construct a family of locally constant functions with values in β indexed by α.

Equations
def LocallyConstant.unflip {X : Type u_5} {α : Type u_6} {β : Type u_7} [Finite α] [TopologicalSpace X] (f : αLocallyConstant X β) :
LocallyConstant X (αβ)

If α is finite, this constructs a locally constant function to α → β given a family of locally constant functions with values in β indexed by α.

Equations
@[simp]
theorem LocallyConstant.unflip_flip {X : Type u_5} {α : Type u_6} {β : Type u_7} [Finite α] [TopologicalSpace X] (f : LocallyConstant X (αβ)) :
@[simp]
theorem LocallyConstant.flip_unflip {X : Type u_5} {α : Type u_6} {β : Type u_7} [Finite α] [TopologicalSpace X] (f : αLocallyConstant X β) :
(unflip f).flip = f
def LocallyConstant.comap {X : Type u_1} {Y : Type u_2} {Z : Type u_3} [TopologicalSpace X] [TopologicalSpace Y] (f : C(X, Y)) (g : LocallyConstant Y Z) :

Pull back of locally constant maps under a continuous map, by pre-composition.

Equations
@[simp]
theorem LocallyConstant.coe_comap {X : Type u_1} {Y : Type u_2} {Z : Type u_3} [TopologicalSpace X] [TopologicalSpace Y] (f : C(X, Y)) (g : LocallyConstant Y Z) :
(comap f g) = g f
theorem LocallyConstant.coe_comap_apply {X : Type u_1} {Y : Type u_2} {Z : Type u_3} [TopologicalSpace X] [TopologicalSpace Y] (f : C(X, Y)) (g : LocallyConstant Y Z) (x : X) :
(comap f g) x = g (f x)
@[simp]
theorem LocallyConstant.comap_comp {X : Type u_1} {Y : Type u_2} {Z : Type u_3} [TopologicalSpace X] [TopologicalSpace Y] {W : Type u_5} [TopologicalSpace W] (f : C(W, X)) (g : C(X, Y)) :
theorem LocallyConstant.comap_comap {X : Type u_1} {Y : Type u_2} {Z : Type u_3} [TopologicalSpace X] [TopologicalSpace Y] {W : Type u_5} [TopologicalSpace W] (f : C(W, X)) (g : C(X, Y)) (x : LocallyConstant Y Z) :
comap f (comap g x) = comap (g.comp f) x
theorem LocallyConstant.comap_const {X : Type u_1} {Y : Type u_2} {Z : Type u_3} [TopologicalSpace X] [TopologicalSpace Y] (f : C(X, Y)) (y : Y) (h : ∀ (x : X), f x = y) :
comap f = fun (g : LocallyConstant Y Z) => const X (g y)
def LocallyConstant.desc {X : Type u_5} {α : Type u_6} {β : Type u_7} [TopologicalSpace X] {g : αβ} (f : Xα) (h : LocallyConstant X β) (cond : g f = h) (inj : Function.Injective g) :

If a locally constant function factors through an injection, then it factors through a locally constant function.

Equations
@[simp]
theorem LocallyConstant.coe_desc {X : Type u_5} {α : Type u_6} {β : Type u_7} [TopologicalSpace X] (f : Xα) (g : αβ) (h : LocallyConstant X β) (cond : g f = h) (inj : Function.Injective g) :
(desc f h cond inj) = f
noncomputable def LocallyConstant.mulIndicator {X : Type u_1} [TopologicalSpace X] {R : Type u_5} [One R] {U : Set X} (f : LocallyConstant X R) (hU : IsClopen U) :

Given a clopen set U and a locally constant function f, LocallyConstant.mulIndicator returns the locally constant function that is f on U and 1 otherwise.

Equations
noncomputable def LocallyConstant.indicator {X : Type u_1} [TopologicalSpace X] {R : Type u_5} [Zero R] {U : Set X} (f : LocallyConstant X R) (hU : IsClopen U) :

Given a clopen set U and a locally constant function f, LocallyConstant.indicator returns the locally constant function that is f on U and 0 otherwise.

Equations
@[simp]
theorem LocallyConstant.mulIndicator_apply {X : Type u_1} [TopologicalSpace X] {R : Type u_5} [One R] {U : Set X} (f : LocallyConstant X R) (hU : IsClopen U) (x : X) :
(f.mulIndicator hU) x = U.mulIndicator (⇑f) x
@[simp]
theorem LocallyConstant.indicator_apply {X : Type u_1} [TopologicalSpace X] {R : Type u_5} [Zero R] {U : Set X} (f : LocallyConstant X R) (hU : IsClopen U) (x : X) :
(f.indicator hU) x = U.indicator (⇑f) x
theorem LocallyConstant.mulIndicator_apply_eq_if {X : Type u_1} [TopologicalSpace X] {R : Type u_5} [One R] {U : Set X} (f : LocallyConstant X R) (a : X) (hU : IsClopen U) :
(f.mulIndicator hU) a = if a U then f a else 1
theorem LocallyConstant.indicator_apply_eq_if {X : Type u_1} [TopologicalSpace X] {R : Type u_5} [Zero R] {U : Set X} (f : LocallyConstant X R) (a : X) (hU : IsClopen U) :
(f.indicator hU) a = if a U then f a else 0
theorem LocallyConstant.mulIndicator_of_mem {X : Type u_1} [TopologicalSpace X] {R : Type u_5} [One R] {U : Set X} (f : LocallyConstant X R) {a : X} (hU : IsClopen U) (h : a U) :
(f.mulIndicator hU) a = f a
theorem LocallyConstant.indicator_of_mem {X : Type u_1} [TopologicalSpace X] {R : Type u_5} [Zero R] {U : Set X} (f : LocallyConstant X R) {a : X} (hU : IsClopen U) (h : a U) :
(f.indicator hU) a = f a
theorem LocallyConstant.mulIndicator_of_notMem {X : Type u_1} [TopologicalSpace X] {R : Type u_5} [One R] {U : Set X} (f : LocallyConstant X R) {a : X} (hU : IsClopen U) (h : aU) :
(f.mulIndicator hU) a = 1
theorem LocallyConstant.indicator_of_notMem {X : Type u_1} [TopologicalSpace X] {R : Type u_5} [Zero R] {U : Set X} (f : LocallyConstant X R) {a : X} (hU : IsClopen U) (h : aU) :
(f.indicator hU) a = 0
@[deprecated LocallyConstant.indicator_of_notMem (since := "2025-05-23")]
theorem LocallyConstant.indicator_of_not_mem {X : Type u_1} [TopologicalSpace X] {R : Type u_5} [Zero R] {U : Set X} (f : LocallyConstant X R) {a : X} (hU : IsClopen U) (h : aU) :
(f.indicator hU) a = 0

Alias of LocallyConstant.indicator_of_notMem.

@[deprecated LocallyConstant.mulIndicator_of_notMem (since := "2025-05-23")]
theorem LocallyConstant.mulIndicator_of_not_mem {X : Type u_1} [TopologicalSpace X] {R : Type u_5} [One R] {U : Set X} (f : LocallyConstant X R) {a : X} (hU : IsClopen U) (h : aU) :
(f.mulIndicator hU) a = 1

Alias of LocallyConstant.mulIndicator_of_notMem.

The equivalence between LocallyConstant X Z and LocallyConstant Y Z given a homeomorphism X ≃ₜ Y

Equations
@[simp]
theorem LocallyConstant.congrLeft_symm_apply {X : Type u_1} {Y : Type u_2} {Z : Type u_3} [TopologicalSpace X] [TopologicalSpace Y] (e : X ≃ₜ Y) (g : LocallyConstant Y Z) :
(congrLeft e).symm g = comap (↑e) g
@[simp]
theorem LocallyConstant.congrLeft_apply {X : Type u_1} {Y : Type u_2} {Z : Type u_3} [TopologicalSpace X] [TopologicalSpace Y] (e : X ≃ₜ Y) (g : LocallyConstant X Z) :
(congrLeft e) g = comap (↑e.symm) g
def LocallyConstant.congrRight {X : Type u_1} {Y : Type u_2} {Z : Type u_3} [TopologicalSpace X] (e : Y Z) :

The equivalence between LocallyConstant X Y and LocallyConstant X Z given an equivalence Y ≃ Z

Equations
@[simp]
theorem LocallyConstant.congrRight_apply {X : Type u_1} {Y : Type u_2} {Z : Type u_3} [TopologicalSpace X] (e : Y Z) (g : LocallyConstant X Y) :
(congrRight e) g = map (⇑e) g
@[simp]
theorem LocallyConstant.congrRight_symm_apply {X : Type u_1} {Y : Type u_2} {Z : Type u_3} [TopologicalSpace X] (e : Y Z) (g : LocallyConstant X Z) :
(congrRight e).symm g = map (⇑e.symm) g

The set of clopen subsets of a topological space is equivalent to the locally constant maps to a two-element set

Equations
  • One or more equations did not get rendered due to their size.
def LocallyConstant.piecewise {X : Type u_1} {Z : Type u_3} [TopologicalSpace X] {C₁ C₂ : Set X} (h₁ : IsClosed C₁) (h₂ : IsClosed C₂) (h : C₁ C₂ = Set.univ) (f : LocallyConstant (↑C₁) Z) (g : LocallyConstant (↑C₂) Z) (hfg : ∀ (x : X) (hx : x C₁ C₂), f x, = g x, ) [DecidablePred fun (x : X) => x C₁] :

Given two closed sets covering a topological space, and locally constant maps on these two sets, then if these two locally constant maps agree on the intersection, we get a piecewise defined locally constant map on the whole space.

TODO: Generalise this construction to ContinuousMap.

Equations
@[simp]
theorem LocallyConstant.piecewise_apply_left {X : Type u_1} {Z : Type u_3} [TopologicalSpace X] {C₁ C₂ : Set X} (h₁ : IsClosed C₁) (h₂ : IsClosed C₂) (h : C₁ C₂ = Set.univ) (f : LocallyConstant (↑C₁) Z) (g : LocallyConstant (↑C₂) Z) (hfg : ∀ (x : X) (hx : x C₁ C₂), f x, = g x, ) [DecidablePred fun (x : X) => x C₁] (x : X) (hx : x C₁) :
(piecewise h₁ h₂ h f g hfg) x = f x, hx
@[simp]
theorem LocallyConstant.piecewise_apply_right {X : Type u_1} {Z : Type u_3} [TopologicalSpace X] {C₁ C₂ : Set X} (h₁ : IsClosed C₁) (h₂ : IsClosed C₂) (h : C₁ C₂ = Set.univ) (f : LocallyConstant (↑C₁) Z) (g : LocallyConstant (↑C₂) Z) (hfg : ∀ (x : X) (hx : x C₁ C₂), f x, = g x, ) [DecidablePred fun (x : X) => x C₁] (x : X) (hx : x C₂) :
(piecewise h₁ h₂ h f g hfg) x = g x, hx
def LocallyConstant.piecewise' {X : Type u_1} {Z : Type u_3} [TopologicalSpace X] {C₀ C₁ C₂ : Set X} (h₀ : C₀ C₁ C₂) (h₁ : IsClosed C₁) (h₂ : IsClosed C₂) (f₁ : LocallyConstant (↑C₁) Z) (f₂ : LocallyConstant (↑C₂) Z) [DecidablePred fun (x : X) => x C₁] (hf : ∀ (x : X) (hx : x C₁ C₂), f₁ x, = f₂ x, ) :
LocallyConstant (↑C₀) Z

A variant of LocallyConstant.piecewise where the two closed sets cover a subset.

TODO: Generalise this construction to ContinuousMap.

Equations
  • One or more equations did not get rendered due to their size.
@[simp]
theorem LocallyConstant.piecewise'_apply_left {X : Type u_1} {Z : Type u_3} [TopologicalSpace X] {C₀ C₁ C₂ : Set X} (h₀ : C₀ C₁ C₂) (h₁ : IsClosed C₁) (h₂ : IsClosed C₂) (f₁ : LocallyConstant (↑C₁) Z) (f₂ : LocallyConstant (↑C₂) Z) [DecidablePred fun (x : X) => x C₁] (hf : ∀ (x : X) (hx : x C₁ C₂), f₁ x, = f₂ x, ) (x : C₀) (hx : x C₁) :
(piecewise' h₀ h₁ h₂ f₁ f₂ hf) x = f₁ x, hx
@[simp]
theorem LocallyConstant.piecewise'_apply_right {X : Type u_1} {Z : Type u_3} [TopologicalSpace X] {C₀ C₁ C₂ : Set X} (h₀ : C₀ C₁ C₂) (h₁ : IsClosed C₁) (h₂ : IsClosed C₂) (f₁ : LocallyConstant (↑C₁) Z) (f₂ : LocallyConstant (↑C₂) Z) [DecidablePred fun (x : X) => x C₁] (hf : ∀ (x : X) (hx : x C₁ C₂), f₁ x, = f₂ x, ) (x : C₀) (hx : x C₂) :
(piecewise' h₀ h₁ h₂ f₁ f₂ hf) x = f₂ x, hx