Documentation

Mathlib.RingTheory.Valuation.Basic

The basics of valuation theory. #

The basic theory of valuations (non-archimedean norms) on a commutative ring, following T. Wedhorn's unpublished notes “Adic Spaces” ([wedhorn_adic]).

The definition of a valuation we use here is Definition 1.22 of [wedhorn_adic]. A valuation on a ring R is a monoid homomorphism v to a linearly ordered commutative monoid with zero, that in addition satisfies the following two axioms:

Valuation R Γ₀ is the type of valuations R → Γ₀, with a coercion to the underlying function. If v is a valuation from R to Γ₀ then the induced group homomorphism Units(R) → Γ₀ is called unit_map v.

The equivalence "relation" IsEquiv v₁ v₂ : Prop defined in 1.27 of [wedhorn_adic] is not strictly speaking a relation, because v₁ : Valuation R Γ₁ and v₂ : Valuation R Γ₂ might not have the same type. This corresponds in ZFC to the set-theoretic difficulty that the class of all valuations (as Γ₀ varies) on a ring R is not a set. The "relation" is however reflexive, symmetric and transitive in the obvious sense. Note that we use 1.27(iii) of [wedhorn_adic] as the definition of equivalence.

Main definitions #

Implementation Details #

AddValuation R Γ₀ is implemented as Valuation R (Multiplicative Γ₀)ᵒᵈ.

Notation #

In the DiscreteValuation locale:

TODO #

If ever someone extends Valuation, we should fully comply to the DFunLike by migrating the boilerplate lemmas to ValuationClass.

structure Valuation (R : Type u_3) (Γ₀ : Type u_4) [LinearOrderedCommMonoidWithZero Γ₀] [Ring R] extends R →*₀ Γ₀ :
Type (max u_3 u_4)

The type of Γ₀-valued valuations on R.

When you extend this structure, make sure to extend ValuationClass.

class ValuationClass (F : Type u_7) (R : outParam (Type u_5)) (Γ₀ : outParam (Type u_6)) [LinearOrderedCommMonoidWithZero Γ₀] [Ring R] [FunLike F R Γ₀] extends MonoidWithZeroHomClass F R Γ₀ :

ValuationClass F α β states that F is a type of valuations.

You should also extend this typeclass when you extend Valuation.

  • map_mul (f : F) (x y : R) : f (x * y) = f x * f y
  • map_one (f : F) : f 1 = 1
  • map_zero (f : F) : f 0 = 0
  • map_add_le_max (f : F) (x y : R) : f (x + y) max (f x) (f y)

    The valuation of a sum is less than or equal to the maximum of the valuations.

Instances
    instance instCoeTCValuationOfValuationClass (F : Type u_2) (R : Type u_3) (Γ₀ : Type u_4) [LinearOrderedCommMonoidWithZero Γ₀] [Ring R] [FunLike F R Γ₀] [ValuationClass F R Γ₀] :
    CoeTC F (Valuation R Γ₀)
    Equations
    instance Valuation.instFunLike {R : Type u_3} {Γ₀ : Type u_4} [Ring R] [LinearOrderedCommMonoidWithZero Γ₀] :
    FunLike (Valuation R Γ₀) R Γ₀
    Equations
    instance Valuation.instValuationClass {R : Type u_3} {Γ₀ : Type u_4} [Ring R] [LinearOrderedCommMonoidWithZero Γ₀] :
    ValuationClass (Valuation R Γ₀) R Γ₀
    @[simp]
    theorem Valuation.coe_mk {R : Type u_3} {Γ₀ : Type u_4} [Ring R] [LinearOrderedCommMonoidWithZero Γ₀] (f : R →*₀ Γ₀) (h : ∀ (x y : R), (↑f).toFun (x + y) max ((↑f).toFun x) ((↑f).toFun y)) :
    { toMonoidWithZeroHom := f, map_add_le_max' := h } = f
    theorem Valuation.toFun_eq_coe {R : Type u_3} {Γ₀ : Type u_4} [Ring R] [LinearOrderedCommMonoidWithZero Γ₀] (v : Valuation R Γ₀) :
    @[simp]
    theorem Valuation.toMonoidWithZeroHom_coe_eq_coe {R : Type u_3} {Γ₀ : Type u_4} [Ring R] [LinearOrderedCommMonoidWithZero Γ₀] (v : Valuation R Γ₀) :
    theorem Valuation.ext {R : Type u_3} {Γ₀ : Type u_4} [Ring R] [LinearOrderedCommMonoidWithZero Γ₀] {v₁ v₂ : Valuation R Γ₀} (h : ∀ (r : R), v₁ r = v₂ r) :
    v₁ = v₂
    theorem Valuation.ext_iff {R : Type u_3} {Γ₀ : Type u_4} [Ring R] [LinearOrderedCommMonoidWithZero Γ₀] {v₁ v₂ : Valuation R Γ₀} :
    v₁ = v₂ ∀ (r : R), v₁ r = v₂ r
    @[simp]
    theorem Valuation.coe_coe {R : Type u_3} {Γ₀ : Type u_4} [Ring R] [LinearOrderedCommMonoidWithZero Γ₀] (v : Valuation R Γ₀) :
    v = v
    theorem Valuation.map_zero {R : Type u_3} {Γ₀ : Type u_4} [Ring R] [LinearOrderedCommMonoidWithZero Γ₀] (v : Valuation R Γ₀) :
    v 0 = 0
    theorem Valuation.map_one {R : Type u_3} {Γ₀ : Type u_4} [Ring R] [LinearOrderedCommMonoidWithZero Γ₀] (v : Valuation R Γ₀) :
    v 1 = 1
    theorem Valuation.map_mul {R : Type u_3} {Γ₀ : Type u_4} [Ring R] [LinearOrderedCommMonoidWithZero Γ₀] (v : Valuation R Γ₀) (x y : R) :
    v (x * y) = v x * v y
    theorem Valuation.map_add {R : Type u_3} {Γ₀ : Type u_4} [Ring R] [LinearOrderedCommMonoidWithZero Γ₀] (v : Valuation R Γ₀) (x y : R) :
    v (x + y) max (v x) (v y)
    @[simp]
    theorem Valuation.map_add' {R : Type u_3} {Γ₀ : Type u_4} [Ring R] [LinearOrderedCommMonoidWithZero Γ₀] (v : Valuation R Γ₀) (x y : R) :
    v (x + y) v x v (x + y) v y
    theorem Valuation.map_add_le {R : Type u_3} {Γ₀ : Type u_4} [Ring R] [LinearOrderedCommMonoidWithZero Γ₀] (v : Valuation R Γ₀) {x y : R} {g : Γ₀} (hx : v x g) (hy : v y g) :
    v (x + y) g
    theorem Valuation.map_add_lt {R : Type u_3} {Γ₀ : Type u_4} [Ring R] [LinearOrderedCommMonoidWithZero Γ₀] (v : Valuation R Γ₀) {x y : R} {g : Γ₀} (hx : v x < g) (hy : v y < g) :
    v (x + y) < g
    theorem Valuation.map_sum_le {R : Type u_3} {Γ₀ : Type u_4} [Ring R] [LinearOrderedCommMonoidWithZero Γ₀] (v : Valuation R Γ₀) {ι : Type u_7} {s : Finset ι} {f : ιR} {g : Γ₀} (hf : is, v (f i) g) :
    v (∑ is, f i) g
    theorem Valuation.map_sum_lt {R : Type u_3} {Γ₀ : Type u_4} [Ring R] [LinearOrderedCommMonoidWithZero Γ₀] (v : Valuation R Γ₀) {ι : Type u_7} {s : Finset ι} {f : ιR} {g : Γ₀} (hg : g 0) (hf : is, v (f i) < g) :
    v (∑ is, f i) < g
    theorem Valuation.map_sum_lt' {R : Type u_3} {Γ₀ : Type u_4} [Ring R] [LinearOrderedCommMonoidWithZero Γ₀] (v : Valuation R Γ₀) {ι : Type u_7} {s : Finset ι} {f : ιR} {g : Γ₀} (hg : 0 < g) (hf : is, v (f i) < g) :
    v (∑ is, f i) < g
    theorem Valuation.map_pow {R : Type u_3} {Γ₀ : Type u_4} [Ring R] [LinearOrderedCommMonoidWithZero Γ₀] (v : Valuation R Γ₀) (x : R) (n : ) :
    v (x ^ n) = v x ^ n
    def Valuation.toPreorder {R : Type u_3} {Γ₀ : Type u_4} [Ring R] [LinearOrderedCommMonoidWithZero Γ₀] (v : Valuation R Γ₀) :

    A valuation gives a preorder on the underlying ring.

    Equations
    theorem Valuation.zero_iff {K : Type u_1} [DivisionRing K] {Γ₀ : Type u_4} [LinearOrderedCommMonoidWithZero Γ₀] [Nontrivial Γ₀] (v : Valuation K Γ₀) {x : K} :
    v x = 0 x = 0

    If v is a valuation on a division ring then v(x) = 0 iff x = 0.

    theorem Valuation.ne_zero_iff {K : Type u_1} [DivisionRing K] {Γ₀ : Type u_4} [LinearOrderedCommMonoidWithZero Γ₀] [Nontrivial Γ₀] (v : Valuation K Γ₀) {x : K} :
    v x 0 x 0
    theorem Valuation.pos_iff {K : Type u_1} [DivisionRing K] {Γ₀ : Type u_4} [LinearOrderedCommMonoidWithZero Γ₀] [Nontrivial Γ₀] (v : Valuation K Γ₀) {x : K} :
    0 < v x x 0
    theorem Valuation.unit_map_eq {R : Type u_3} {Γ₀ : Type u_4} [Ring R] [LinearOrderedCommMonoidWithZero Γ₀] (v : Valuation R Γ₀) (u : Rˣ) :
    ((Units.map v) u) = v u
    theorem Valuation.ne_zero_of_unit {K : Type u_1} [DivisionRing K] {Γ₀ : Type u_4} [LinearOrderedCommMonoidWithZero Γ₀] [Nontrivial Γ₀] (v : Valuation K Γ₀) (x : Kˣ) :
    v x 0
    theorem Valuation.ne_zero_of_isUnit {K : Type u_1} [DivisionRing K] {Γ₀ : Type u_4} [LinearOrderedCommMonoidWithZero Γ₀] [Nontrivial Γ₀] (v : Valuation K Γ₀) (x : K) (hx : IsUnit x) :
    v x 0
    def Valuation.comap {R : Type u_3} {Γ₀ : Type u_4} [Ring R] [LinearOrderedCommMonoidWithZero Γ₀] {S : Type u_7} [Ring S] (f : S →+* R) (v : Valuation R Γ₀) :
    Valuation S Γ₀

    A ring homomorphism S → R induces a map Valuation R Γ₀ → Valuation S Γ₀.

    Equations
    • Valuation.comap f v = { toFun := v f, map_zero' := , map_one' := , map_mul' := , map_add_le_max' := }
    @[simp]
    theorem Valuation.comap_apply {R : Type u_3} {Γ₀ : Type u_4} [Ring R] [LinearOrderedCommMonoidWithZero Γ₀] {S : Type u_7} [Ring S] (f : S →+* R) (v : Valuation R Γ₀) (s : S) :
    (comap f v) s = v (f s)
    @[simp]
    theorem Valuation.comap_id {R : Type u_3} {Γ₀ : Type u_4} [Ring R] [LinearOrderedCommMonoidWithZero Γ₀] (v : Valuation R Γ₀) :
    theorem Valuation.comap_comp {R : Type u_3} {Γ₀ : Type u_4} [Ring R] [LinearOrderedCommMonoidWithZero Γ₀] (v : Valuation R Γ₀) {S₁ : Type u_7} {S₂ : Type u_8} [Ring S₁] [Ring S₂] (f : S₁ →+* S₂) (g : S₂ →+* R) :
    comap (g.comp f) v = comap f (comap g v)
    def Valuation.map {R : Type u_3} {Γ₀ : Type u_4} {Γ'₀ : Type u_5} [Ring R] [LinearOrderedCommMonoidWithZero Γ₀] [LinearOrderedCommMonoidWithZero Γ'₀] (f : Γ₀ →*₀ Γ'₀) (hf : Monotone f) (v : Valuation R Γ₀) :
    Valuation R Γ'₀

    A -preserving group homomorphism Γ₀ → Γ'₀ induces a map Valuation R Γ₀ → Valuation R Γ'₀.

    Equations
    • Valuation.map f hf v = { toFun := f v, map_zero' := , map_one' := , map_mul' := , map_add_le_max' := }
    @[simp]
    theorem Valuation.map_apply {R : Type u_3} {Γ₀ : Type u_4} {Γ'₀ : Type u_5} [Ring R] [LinearOrderedCommMonoidWithZero Γ₀] [LinearOrderedCommMonoidWithZero Γ'₀] (f : Γ₀ →*₀ Γ'₀) (hf : Monotone f) (v : Valuation R Γ₀) (r : R) :
    (map f hf v) r = f (v r)
    def Valuation.IsEquiv {R : Type u_3} {Γ₀ : Type u_4} {Γ'₀ : Type u_5} [Ring R] [LinearOrderedCommMonoidWithZero Γ₀] [LinearOrderedCommMonoidWithZero Γ'₀] (v₁ : Valuation R Γ₀) (v₂ : Valuation R Γ'₀) :

    Two valuations on R are defined to be equivalent if they induce the same preorder on R.

    Equations
    @[simp]
    theorem Valuation.map_neg {R : Type u_3} {Γ₀ : Type u_4} [Ring R] [LinearOrderedCommMonoidWithZero Γ₀] (v : Valuation R Γ₀) (x : R) :
    v (-x) = v x
    theorem Valuation.map_sub_swap {R : Type u_3} {Γ₀ : Type u_4} [Ring R] [LinearOrderedCommMonoidWithZero Γ₀] (v : Valuation R Γ₀) (x y : R) :
    v (x - y) = v (y - x)
    theorem Valuation.map_sub {R : Type u_3} {Γ₀ : Type u_4} [Ring R] [LinearOrderedCommMonoidWithZero Γ₀] (v : Valuation R Γ₀) (x y : R) :
    v (x - y) max (v x) (v y)
    theorem Valuation.map_sub_le {R : Type u_3} {Γ₀ : Type u_4} [Ring R] [LinearOrderedCommMonoidWithZero Γ₀] (v : Valuation R Γ₀) {x y : R} {g : Γ₀} (hx : v x g) (hy : v y g) :
    v (x - y) g
    theorem Valuation.map_sub_lt {R : Type u_3} {Γ₀ : Type u_4} [Ring R] [LinearOrderedCommMonoidWithZero Γ₀] (v : Valuation R Γ₀) {x y : R} {g : Γ₀} (hx : v x < g) (hy : v y < g) :
    v (x - y) < g
    theorem Valuation.map_add_of_distinct_val {R : Type u_3} {Γ₀ : Type u_4} [Ring R] [LinearOrderedCommMonoidWithZero Γ₀] (v : Valuation R Γ₀) {x y : R} (h : v x v y) :
    v (x + y) = max (v x) (v y)
    theorem Valuation.map_add_eq_of_lt_right {R : Type u_3} {Γ₀ : Type u_4} [Ring R] [LinearOrderedCommMonoidWithZero Γ₀] (v : Valuation R Γ₀) {x y : R} (h : v x < v y) :
    v (x + y) = v y
    theorem Valuation.map_add_eq_of_lt_left {R : Type u_3} {Γ₀ : Type u_4} [Ring R] [LinearOrderedCommMonoidWithZero Γ₀] (v : Valuation R Γ₀) {x y : R} (h : v y < v x) :
    v (x + y) = v x
    theorem Valuation.map_sub_eq_of_lt_right {R : Type u_3} {Γ₀ : Type u_4} [Ring R] [LinearOrderedCommMonoidWithZero Γ₀] (v : Valuation R Γ₀) {x y : R} (h : v x < v y) :
    v (x - y) = v y
    theorem Valuation.map_sum_eq_of_lt {R : Type u_3} {Γ₀ : Type u_4} [Ring R] [LinearOrderedCommMonoidWithZero Γ₀] (v : Valuation R Γ₀) {ι : Type u_7} {s : Finset ι} {f : ιR} {j : ι} (hj : j s) (h0 : v (f j) 0) (hf : is \ {j}, v (f i) < v (f j)) :
    v (∑ is, f i) = v (f j)
    theorem Valuation.map_sub_eq_of_lt_left {R : Type u_3} {Γ₀ : Type u_4} [Ring R] [LinearOrderedCommMonoidWithZero Γ₀] (v : Valuation R Γ₀) {x y : R} (h : v y < v x) :
    v (x - y) = v x
    theorem Valuation.map_eq_of_sub_lt {R : Type u_3} {Γ₀ : Type u_4} [Ring R] [LinearOrderedCommMonoidWithZero Γ₀] (v : Valuation R Γ₀) {x y : R} (h : v (y - x) < v x) :
    v y = v x
    theorem Valuation.map_one_add_of_lt {R : Type u_3} {Γ₀ : Type u_4} [Ring R] [LinearOrderedCommMonoidWithZero Γ₀] (v : Valuation R Γ₀) {x : R} (h : v x < 1) :
    v (1 + x) = 1
    theorem Valuation.map_one_sub_of_lt {R : Type u_3} {Γ₀ : Type u_4} [Ring R] [LinearOrderedCommMonoidWithZero Γ₀] (v : Valuation R Γ₀) {x : R} (h : v x < 1) :
    v (1 - x) = 1
    def Valuation.congr {R : Type u_3} {Γ₀ : Type u_4} {Γ'₀ : Type u_5} [Ring R] [LinearOrderedCommMonoidWithZero Γ₀] [LinearOrderedCommMonoidWithZero Γ'₀] (f : Γ₀ ≃*o Γ'₀) :
    Valuation R Γ₀ Valuation R Γ'₀

    An ordered monoid isomorphism Γ₀ ≃ Γ'₀ induces an equivalence Valuation R Γ₀ ≃ Valuation R Γ'₀.

    Equations
    theorem Valuation.map_inv {Γ₀ : Type u_4} [LinearOrderedCommGroupWithZero Γ₀] {R : Type u_7} [DivisionRing R] (v : Valuation R Γ₀) (x : R) :
    v x⁻¹ = (v x)⁻¹
    theorem Valuation.map_div {Γ₀ : Type u_4} [LinearOrderedCommGroupWithZero Γ₀] {R : Type u_7} [DivisionRing R] (v : Valuation R Γ₀) (x y : R) :
    v (x / y) = v x / v y
    theorem Valuation.one_lt_val_iff {K : Type u_1} [DivisionRing K] {Γ₀ : Type u_4} [LinearOrderedCommGroupWithZero Γ₀] (v : Valuation K Γ₀) {x : K} (h : x 0) :
    1 < v x v x⁻¹ < 1
    theorem Valuation.one_le_val_iff {K : Type u_1} [DivisionRing K] {Γ₀ : Type u_4} [LinearOrderedCommGroupWithZero Γ₀] (v : Valuation K Γ₀) {x : K} (h : x 0) :
    1 v x v x⁻¹ 1
    theorem Valuation.val_lt_one_iff {K : Type u_1} [DivisionRing K] {Γ₀ : Type u_4} [LinearOrderedCommGroupWithZero Γ₀] (v : Valuation K Γ₀) {x : K} (h : x 0) :
    v x < 1 1 < v x⁻¹
    theorem Valuation.val_le_one_iff {K : Type u_1} [DivisionRing K] {Γ₀ : Type u_4} [LinearOrderedCommGroupWithZero Γ₀] (v : Valuation K Γ₀) {x : K} (h : x 0) :
    v x 1 1 v x⁻¹
    theorem Valuation.val_eq_one_iff {K : Type u_1} [DivisionRing K] {Γ₀ : Type u_4} [LinearOrderedCommGroupWithZero Γ₀] (v : Valuation K Γ₀) {x : K} :
    v x = 1 v x⁻¹ = 1
    theorem Valuation.val_le_one_or_val_inv_lt_one {K : Type u_1} [DivisionRing K] {Γ₀ : Type u_4} [LinearOrderedCommGroupWithZero Γ₀] (v : Valuation K Γ₀) (x : K) :
    v x 1 v x⁻¹ < 1
    theorem Valuation.val_le_one_or_val_inv_le_one {K : Type u_1} [DivisionRing K] {Γ₀ : Type u_4} [LinearOrderedCommGroupWithZero Γ₀] (v : Valuation K Γ₀) (x : K) :
    v x 1 v x⁻¹ 1

    This theorem is a weaker version of Valuation.val_le_one_or_val_inv_lt_one, but more symmetric in x and x⁻¹.

    def Valuation.ltAddSubgroup {R : Type u_3} {Γ₀ : Type u_4} [Ring R] [LinearOrderedCommGroupWithZero Γ₀] (v : Valuation R Γ₀) (γ : Γ₀ˣ) :

    The subgroup of elements whose valuation is less than a certain unit.

    Equations
    • v.ltAddSubgroup γ = { carrier := {x : R | v x < γ}, add_mem' := , zero_mem' := , neg_mem' := }
    class Valuation.IsNontrivial {R : Type u_3} {Γ₀ : Type u_4} [Ring R] [LinearOrderedCommMonoidWithZero Γ₀] (v : Valuation R Γ₀) :

    A valuation on a ring is nontrivial if there exists an element with valuation not equal to 0 or 1.

    • exists_val_nontrivial : ∃ (x : R), v x 0 v x 1
    Instances
      theorem Valuation.isNontrivial_iff_exists_unit {Γ₀ : Type u_4} [LinearOrderedCommMonoidWithZero Γ₀] {K : Type u_7} [Field K] {w : Valuation K Γ₀} :
      w.IsNontrivial ∃ (x : Kˣ), w x 1

      For fields, being nontrivial is equivalent to the existence of a unit with valuation not equal to 1.

      theorem Valuation.IsEquiv.refl {R : Type u_3} {Γ₀ : Type u_4} [Ring R] [LinearOrderedCommMonoidWithZero Γ₀] {v : Valuation R Γ₀} :
      theorem Valuation.IsEquiv.symm {R : Type u_3} {Γ₀ : Type u_4} {Γ'₀ : Type u_5} [Ring R] [LinearOrderedCommMonoidWithZero Γ₀] [LinearOrderedCommMonoidWithZero Γ'₀] {v₁ : Valuation R Γ₀} {v₂ : Valuation R Γ'₀} (h : v₁.IsEquiv v₂) :
      v₂.IsEquiv v₁
      theorem Valuation.IsEquiv.trans {R : Type u_3} {Γ₀ : Type u_4} {Γ'₀ : Type u_5} {Γ''₀ : Type u_6} [LinearOrderedCommMonoidWithZero Γ''₀] [Ring R] [LinearOrderedCommMonoidWithZero Γ₀] [LinearOrderedCommMonoidWithZero Γ'₀] {v₁ : Valuation R Γ₀} {v₂ : Valuation R Γ'₀} {v₃ : Valuation R Γ''₀} (h₁₂ : v₁.IsEquiv v₂) (h₂₃ : v₂.IsEquiv v₃) :
      v₁.IsEquiv v₃
      theorem Valuation.IsEquiv.of_eq {R : Type u_3} {Γ₀ : Type u_4} [Ring R] [LinearOrderedCommMonoidWithZero Γ₀] {v v' : Valuation R Γ₀} (h : v = v') :
      v.IsEquiv v'
      theorem Valuation.IsEquiv.map {R : Type u_3} {Γ₀ : Type u_4} {Γ'₀ : Type u_5} [Ring R] [LinearOrderedCommMonoidWithZero Γ₀] [LinearOrderedCommMonoidWithZero Γ'₀] {v v' : Valuation R Γ₀} (f : Γ₀ →*₀ Γ'₀) (hf : Monotone f) (inf : Function.Injective f) (h : v.IsEquiv v') :
      theorem Valuation.IsEquiv.comap {R : Type u_3} {Γ₀ : Type u_4} {Γ'₀ : Type u_5} [Ring R] [LinearOrderedCommMonoidWithZero Γ₀] [LinearOrderedCommMonoidWithZero Γ'₀] {v₁ : Valuation R Γ₀} {v₂ : Valuation R Γ'₀} {S : Type u_7} [Ring S] (f : S →+* R) (h : v₁.IsEquiv v₂) :

      comap preserves equivalence.

      theorem Valuation.IsEquiv.val_eq {R : Type u_3} {Γ₀ : Type u_4} {Γ'₀ : Type u_5} [Ring R] [LinearOrderedCommMonoidWithZero Γ₀] [LinearOrderedCommMonoidWithZero Γ'₀] {v₁ : Valuation R Γ₀} {v₂ : Valuation R Γ'₀} (h : v₁.IsEquiv v₂) {r s : R} :
      v₁ r = v₁ s v₂ r = v₂ s
      theorem Valuation.IsEquiv.ne_zero {R : Type u_3} {Γ₀ : Type u_4} {Γ'₀ : Type u_5} [Ring R] [LinearOrderedCommMonoidWithZero Γ₀] [LinearOrderedCommMonoidWithZero Γ'₀] {v₁ : Valuation R Γ₀} {v₂ : Valuation R Γ'₀} (h : v₁.IsEquiv v₂) {r : R} :
      v₁ r 0 v₂ r 0
      theorem Valuation.isEquiv_of_map_strictMono {R : Type u_3} {Γ₀ : Type u_4} {Γ'₀ : Type u_5} [LinearOrderedCommMonoidWithZero Γ₀] [LinearOrderedCommMonoidWithZero Γ'₀] [Ring R] {v : Valuation R Γ₀} (f : Γ₀ →*₀ Γ'₀) (H : StrictMono f) :
      (map f v).IsEquiv v
      theorem Valuation.isEquiv_iff_val_lt_val {K : Type u_1} [DivisionRing K] {Γ₀ : Type u_4} {Γ'₀ : Type u_5} [LinearOrderedCommMonoidWithZero Γ₀] [LinearOrderedCommMonoidWithZero Γ'₀] {v : Valuation K Γ₀} {v' : Valuation K Γ'₀} :
      v.IsEquiv v' ∀ {x y : K}, v x < v y v' x < v' y
      theorem Valuation.IsEquiv.lt_iff_lt {K : Type u_1} [DivisionRing K] {Γ₀ : Type u_4} {Γ'₀ : Type u_5} [LinearOrderedCommMonoidWithZero Γ₀] [LinearOrderedCommMonoidWithZero Γ'₀] {v : Valuation K Γ₀} {v' : Valuation K Γ'₀} :
      v.IsEquiv v'∀ {x y : K}, v x < v y v' x < v' y

      Alias of the forward direction of Valuation.isEquiv_iff_val_lt_val.

      theorem Valuation.isEquiv_of_val_le_one {K : Type u_1} [DivisionRing K] {Γ₀ : Type u_4} {Γ'₀ : Type u_5} [LinearOrderedCommGroupWithZero Γ₀] [LinearOrderedCommGroupWithZero Γ'₀] {v : Valuation K Γ₀} {v' : Valuation K Γ'₀} (h : ∀ {x : K}, v x 1 v' x 1) :
      v.IsEquiv v'
      theorem Valuation.isEquiv_iff_val_le_one {K : Type u_1} [DivisionRing K] {Γ₀ : Type u_4} {Γ'₀ : Type u_5} [LinearOrderedCommGroupWithZero Γ₀] [LinearOrderedCommGroupWithZero Γ'₀] {v : Valuation K Γ₀} {v' : Valuation K Γ'₀} :
      v.IsEquiv v' ∀ {x : K}, v x 1 v' x 1
      theorem Valuation.IsEquiv.le_one_iff_le_one {K : Type u_1} [DivisionRing K] {Γ₀ : Type u_4} {Γ'₀ : Type u_5} [LinearOrderedCommGroupWithZero Γ₀] [LinearOrderedCommGroupWithZero Γ'₀] {v : Valuation K Γ₀} {v' : Valuation K Γ'₀} :
      v.IsEquiv v'∀ {x : K}, v x 1 v' x 1

      Alias of the forward direction of Valuation.isEquiv_iff_val_le_one.

      theorem Valuation.isEquiv_iff_val_eq_one {K : Type u_1} [DivisionRing K] {Γ₀ : Type u_4} {Γ'₀ : Type u_5} [LinearOrderedCommGroupWithZero Γ₀] [LinearOrderedCommGroupWithZero Γ'₀] {v : Valuation K Γ₀} {v' : Valuation K Γ'₀} :
      v.IsEquiv v' ∀ {x : K}, v x = 1 v' x = 1
      theorem Valuation.IsEquiv.eq_one_iff_eq_one {K : Type u_1} [DivisionRing K] {Γ₀ : Type u_4} {Γ'₀ : Type u_5} [LinearOrderedCommGroupWithZero Γ₀] [LinearOrderedCommGroupWithZero Γ'₀] {v : Valuation K Γ₀} {v' : Valuation K Γ'₀} :
      v.IsEquiv v'∀ {x : K}, v x = 1 v' x = 1

      Alias of the forward direction of Valuation.isEquiv_iff_val_eq_one.

      theorem Valuation.isEquiv_iff_val_lt_one {K : Type u_1} [DivisionRing K] {Γ₀ : Type u_4} {Γ'₀ : Type u_5} [LinearOrderedCommGroupWithZero Γ₀] [LinearOrderedCommGroupWithZero Γ'₀] {v : Valuation K Γ₀} {v' : Valuation K Γ'₀} :
      v.IsEquiv v' ∀ {x : K}, v x < 1 v' x < 1
      theorem Valuation.IsEquiv.lt_one_iff_lt_one {K : Type u_1} [DivisionRing K] {Γ₀ : Type u_4} {Γ'₀ : Type u_5} [LinearOrderedCommGroupWithZero Γ₀] [LinearOrderedCommGroupWithZero Γ'₀] {v : Valuation K Γ₀} {v' : Valuation K Γ'₀} :
      v.IsEquiv v'∀ {x : K}, v x < 1 v' x < 1

      Alias of the forward direction of Valuation.isEquiv_iff_val_lt_one.

      theorem Valuation.isEquiv_iff_val_sub_one_lt_one {K : Type u_1} [DivisionRing K] {Γ₀ : Type u_4} {Γ'₀ : Type u_5} [LinearOrderedCommGroupWithZero Γ₀] [LinearOrderedCommGroupWithZero Γ'₀] {v : Valuation K Γ₀} {v' : Valuation K Γ'₀} :
      v.IsEquiv v' ∀ {x : K}, v (x - 1) < 1 v' (x - 1) < 1
      theorem Valuation.IsEquiv.val_sub_one_lt_one_iff {K : Type u_1} [DivisionRing K] {Γ₀ : Type u_4} {Γ'₀ : Type u_5} [LinearOrderedCommGroupWithZero Γ₀] [LinearOrderedCommGroupWithZero Γ'₀] {v : Valuation K Γ₀} {v' : Valuation K Γ'₀} :
      v.IsEquiv v'∀ {x : K}, v (x - 1) < 1 v' (x - 1) < 1

      Alias of the forward direction of Valuation.isEquiv_iff_val_sub_one_lt_one.

      theorem Valuation.isEquiv_tfae {K : Type u_1} [DivisionRing K] {Γ₀ : Type u_4} {Γ'₀ : Type u_5} [LinearOrderedCommGroupWithZero Γ₀] [LinearOrderedCommGroupWithZero Γ'₀] (v : Valuation K Γ₀) (v' : Valuation K Γ'₀) :
      [v.IsEquiv v', ∀ {x y : K}, v x < v y v' x < v' y, ∀ {x : K}, v x 1 v' x 1, ∀ {x : K}, v x = 1 v' x = 1, ∀ {x : K}, v x < 1 v' x < 1, ∀ {x : K}, v (x - 1) < 1 v' (x - 1) < 1].TFAE
      def Valuation.supp {R : Type u_3} {Γ₀ : Type u_4} [CommRing R] [LinearOrderedCommMonoidWithZero Γ₀] (v : Valuation R Γ₀) :

      The support of a valuation v : R → Γ₀ is the ideal of R where v vanishes.

      Equations
      • v.supp = { carrier := {x : R | v x = 0}, add_mem' := , zero_mem' := , smul_mem' := }
      @[simp]
      theorem Valuation.mem_supp_iff {R : Type u_3} {Γ₀ : Type u_4} [CommRing R] [LinearOrderedCommMonoidWithZero Γ₀] (v : Valuation R Γ₀) (x : R) :
      x v.supp v x = 0

      The support of a valuation is a prime ideal.

      theorem Valuation.map_add_supp {R : Type u_3} {Γ₀ : Type u_4} [CommRing R] [LinearOrderedCommMonoidWithZero Γ₀] (v : Valuation R Γ₀) (a : R) {s : R} (h : s v.supp) :
      v (a + s) = v a
      theorem Valuation.comap_supp {R : Type u_3} {Γ₀ : Type u_4} [CommRing R] [LinearOrderedCommMonoidWithZero Γ₀] (v : Valuation R Γ₀) {S : Type u_7} [CommRing S] (f : S →+* R) :
      def AddValuation (R : Type u_3) [Ring R] (Γ₀ : Type u_4) [LinearOrderedAddCommMonoidWithTop Γ₀] :
      Type (max u_3 u_4)

      The type of Γ₀-valued additive valuations on R.

      Equations
      instance AddValuation.instFunLike (R : Type u_6) (Γ₀ : Type u_7) [Ring R] [LinearOrderedAddCommMonoidWithTop Γ₀] :
      FunLike (AddValuation R Γ₀) R Γ₀

      A valuation is coerced to the underlying function R → Γ₀.

      Equations
      def AddValuation.of {R : Type u_3} {Γ₀ : Type u_4} [Ring R] [LinearOrderedAddCommMonoidWithTop Γ₀] (f : RΓ₀) (h0 : f 0 = ) (h1 : f 1 = 0) (hadd : ∀ (x y : R), min (f x) (f y) f (x + y)) (hmul : ∀ (x y : R), f (x * y) = f x + f y) :
      AddValuation R Γ₀

      An alternate constructor of AddValuation, that doesn't reference Multiplicative Γ₀ᵒᵈ

      Equations
      • AddValuation.of f h0 h1 hadd hmul = { toFun := f, map_zero' := h0, map_one' := h1, map_mul' := hmul, map_add_le_max' := hadd }
      @[simp]
      theorem AddValuation.of_apply {R : Type u_3} {Γ₀ : Type u_4} [Ring R] [LinearOrderedAddCommMonoidWithTop Γ₀] (f : RΓ₀) {h0 : f 0 = } {h1 : f 1 = 0} {hadd : ∀ (x y : R), min (f x) (f y) f (x + y)} {hmul : ∀ (x y : R), f (x * y) = f x + f y} {r : R} :
      (of f h0 h1 hadd hmul) r = f r

      The Valuation associated to an AddValuation (useful if the latter is constructed using AddValuation.of).

      Equations
      @[deprecated AddValuation.toValuation (since := "2024-11-09")]

      Alias of AddValuation.toValuation.


      The Valuation associated to an AddValuation (useful if the latter is constructed using AddValuation.of).

      Equations
      @[simp]
      theorem AddValuation.toValuation_apply {R : Type u_3} {Γ₀ : Type u_4} [Ring R] [LinearOrderedAddCommMonoidWithTop Γ₀] (v : AddValuation R Γ₀) (r : R) :
      @[deprecated AddValuation.toValuation_apply (since := "2024-11-09")]
      theorem AddValuation.valuation_apply {R : Type u_3} {Γ₀ : Type u_4} [Ring R] [LinearOrderedAddCommMonoidWithTop Γ₀] (v : AddValuation R Γ₀) (r : R) :

      Alias of AddValuation.toValuation_apply.

      @[simp]
      theorem AddValuation.map_zero {R : Type u_3} {Γ₀ : Type u_4} [Ring R] [LinearOrderedAddCommMonoidWithTop Γ₀] (v : AddValuation R Γ₀) :
      v 0 =
      @[simp]
      theorem AddValuation.map_one {R : Type u_3} {Γ₀ : Type u_4} [Ring R] [LinearOrderedAddCommMonoidWithTop Γ₀] (v : AddValuation R Γ₀) :
      v 1 = 0
      def AddValuation.asFun {R : Type u_3} {Γ₀ : Type u_4} [Ring R] [LinearOrderedAddCommMonoidWithTop Γ₀] (v : AddValuation R Γ₀) :
      RΓ₀

      A helper function for Lean to inferring types correctly

      Equations
      @[simp]
      theorem AddValuation.map_mul {R : Type u_3} {Γ₀ : Type u_4} [Ring R] [LinearOrderedAddCommMonoidWithTop Γ₀] (v : AddValuation R Γ₀) (x y : R) :
      v (x * y) = v x + v y
      theorem AddValuation.map_add {R : Type u_3} {Γ₀ : Type u_4} [Ring R] [LinearOrderedAddCommMonoidWithTop Γ₀] (v : AddValuation R Γ₀) (x y : R) :
      min (v x) (v y) v (x + y)
      @[simp]
      theorem AddValuation.map_add' {R : Type u_3} {Γ₀ : Type u_4} [Ring R] [LinearOrderedAddCommMonoidWithTop Γ₀] (v : AddValuation R Γ₀) (x y : R) :
      v x v (x + y) v y v (x + y)
      theorem AddValuation.map_le_add {R : Type u_3} {Γ₀ : Type u_4} [Ring R] [LinearOrderedAddCommMonoidWithTop Γ₀] (v : AddValuation R Γ₀) {x y : R} {g : Γ₀} (hx : g v x) (hy : g v y) :
      g v (x + y)
      theorem AddValuation.map_lt_add {R : Type u_3} {Γ₀ : Type u_4} [Ring R] [LinearOrderedAddCommMonoidWithTop Γ₀] (v : AddValuation R Γ₀) {x y : R} {g : Γ₀} (hx : g < v x) (hy : g < v y) :
      g < v (x + y)
      theorem AddValuation.map_le_sum {R : Type u_3} {Γ₀ : Type u_4} [Ring R] [LinearOrderedAddCommMonoidWithTop Γ₀] (v : AddValuation R Γ₀) {ι : Type u_6} {s : Finset ι} {f : ιR} {g : Γ₀} (hf : is, g v (f i)) :
      g v (∑ is, f i)
      theorem AddValuation.map_lt_sum {R : Type u_3} {Γ₀ : Type u_4} [Ring R] [LinearOrderedAddCommMonoidWithTop Γ₀] (v : AddValuation R Γ₀) {ι : Type u_6} {s : Finset ι} {f : ιR} {g : Γ₀} (hg : g ) (hf : is, g < v (f i)) :
      g < v (∑ is, f i)
      theorem AddValuation.map_lt_sum' {R : Type u_3} {Γ₀ : Type u_4} [Ring R] [LinearOrderedAddCommMonoidWithTop Γ₀] (v : AddValuation R Γ₀) {ι : Type u_6} {s : Finset ι} {f : ιR} {g : Γ₀} (hg : g < ) (hf : is, g < v (f i)) :
      g < v (∑ is, f i)
      @[simp]
      theorem AddValuation.map_pow {R : Type u_3} {Γ₀ : Type u_4} [Ring R] [LinearOrderedAddCommMonoidWithTop Γ₀] (v : AddValuation R Γ₀) (x : R) (n : ) :
      v (x ^ n) = n v x
      theorem AddValuation.ext {R : Type u_3} {Γ₀ : Type u_4} [Ring R] [LinearOrderedAddCommMonoidWithTop Γ₀] {v₁ v₂ : AddValuation R Γ₀} (h : ∀ (r : R), v₁ r = v₂ r) :
      v₁ = v₂
      theorem AddValuation.ext_iff {R : Type u_3} {Γ₀ : Type u_4} [Ring R] [LinearOrderedAddCommMonoidWithTop Γ₀] {v₁ v₂ : AddValuation R Γ₀} :
      v₁ = v₂ ∀ (r : R), v₁ r = v₂ r
      def AddValuation.toPreorder {R : Type u_3} {Γ₀ : Type u_4} [Ring R] [LinearOrderedAddCommMonoidWithTop Γ₀] (v : AddValuation R Γ₀) :

      A valuation gives a preorder on the underlying ring.

      Equations
      @[simp]
      theorem AddValuation.top_iff {K : Type u_1} [DivisionRing K] {Γ₀ : Type u_4} [LinearOrderedAddCommMonoidWithTop Γ₀] [Nontrivial Γ₀] (v : AddValuation K Γ₀) {x : K} :
      v x = x = 0

      If v is an additive valuation on a division ring then v(x) = ⊤ iff x = 0.

      theorem AddValuation.ne_top_iff {K : Type u_1} [DivisionRing K] {Γ₀ : Type u_4} [LinearOrderedAddCommMonoidWithTop Γ₀] [Nontrivial Γ₀] (v : AddValuation K Γ₀) {x : K} :
      v x x 0
      def AddValuation.comap {R : Type u_3} {Γ₀ : Type u_4} [Ring R] [LinearOrderedAddCommMonoidWithTop Γ₀] {S : Type u_6} [Ring S] (f : S →+* R) (v : AddValuation R Γ₀) :
      AddValuation S Γ₀

      A ring homomorphism S → R induces a map AddValuation R Γ₀ → AddValuation S Γ₀.

      Equations
      @[simp]
      theorem AddValuation.comap_id {R : Type u_3} {Γ₀ : Type u_4} [Ring R] [LinearOrderedAddCommMonoidWithTop Γ₀] (v : AddValuation R Γ₀) :
      theorem AddValuation.comap_comp {R : Type u_3} {Γ₀ : Type u_4} [Ring R] [LinearOrderedAddCommMonoidWithTop Γ₀] (v : AddValuation R Γ₀) {S₁ : Type u_6} {S₂ : Type u_7} [Ring S₁] [Ring S₂] (f : S₁ →+* S₂) (g : S₂ →+* R) :
      comap (g.comp f) v = comap f (comap g v)
      def AddValuation.map {R : Type u_3} {Γ₀ : Type u_4} {Γ'₀ : Type u_5} [Ring R] [LinearOrderedAddCommMonoidWithTop Γ₀] [LinearOrderedAddCommMonoidWithTop Γ'₀] (f : Γ₀ →+ Γ'₀) (ht : f = ) (hf : Monotone f) (v : AddValuation R Γ₀) :
      AddValuation R Γ'₀

      A -preserving, -preserving group homomorphism Γ₀ → Γ'₀ induces a map AddValuation R Γ₀ → AddValuation R Γ'₀.

      Equations
      @[simp]
      theorem AddValuation.map_apply {R : Type u_3} {Γ₀ : Type u_4} {Γ'₀ : Type u_5} [Ring R] [LinearOrderedAddCommMonoidWithTop Γ₀] [LinearOrderedAddCommMonoidWithTop Γ'₀] (f : Γ₀ →+ Γ'₀) (ht : f = ) (hf : Monotone f) (v : AddValuation R Γ₀) (r : R) :
      (map f ht hf v) r = f (v r)
      def AddValuation.IsEquiv {R : Type u_3} {Γ₀ : Type u_4} {Γ'₀ : Type u_5} [Ring R] [LinearOrderedAddCommMonoidWithTop Γ₀] [LinearOrderedAddCommMonoidWithTop Γ'₀] (v₁ : AddValuation R Γ₀) (v₂ : AddValuation R Γ'₀) :

      Two additive valuations on R are defined to be equivalent if they induce the same preorder on R.

      Equations
      @[simp]
      theorem AddValuation.map_neg {R : Type u_3} {Γ₀ : Type u_4} [Ring R] [LinearOrderedAddCommMonoidWithTop Γ₀] (v : AddValuation R Γ₀) (x : R) :
      v (-x) = v x
      theorem AddValuation.map_sub_swap {R : Type u_3} {Γ₀ : Type u_4} [Ring R] [LinearOrderedAddCommMonoidWithTop Γ₀] (v : AddValuation R Γ₀) (x y : R) :
      v (x - y) = v (y - x)
      theorem AddValuation.map_sub {R : Type u_3} {Γ₀ : Type u_4} [Ring R] [LinearOrderedAddCommMonoidWithTop Γ₀] (v : AddValuation R Γ₀) (x y : R) :
      min (v x) (v y) v (x - y)
      theorem AddValuation.map_le_sub {R : Type u_3} {Γ₀ : Type u_4} [Ring R] [LinearOrderedAddCommMonoidWithTop Γ₀] (v : AddValuation R Γ₀) {x y : R} {g : Γ₀} (hx : g v x) (hy : g v y) :
      g v (x - y)
      theorem AddValuation.map_add_of_distinct_val {R : Type u_3} {Γ₀ : Type u_4} [Ring R] [LinearOrderedAddCommMonoidWithTop Γ₀] (v : AddValuation R Γ₀) {x y : R} (h : v x v y) :
      v (x + y) = min (v x) (v y)
      theorem AddValuation.map_add_eq_of_lt_left {R : Type u_3} {Γ₀ : Type u_4} [Ring R] [LinearOrderedAddCommMonoidWithTop Γ₀] (v : AddValuation R Γ₀) {x y : R} (h : v x < v y) :
      v (x + y) = v x
      theorem AddValuation.map_add_eq_of_lt_right {R : Type u_3} {Γ₀ : Type u_4} [Ring R] [LinearOrderedAddCommMonoidWithTop Γ₀] (v : AddValuation R Γ₀) {x y : R} (hx : v y < v x) :
      v (x + y) = v y
      theorem AddValuation.map_sub_eq_of_lt_left {R : Type u_3} {Γ₀ : Type u_4} [Ring R] [LinearOrderedAddCommMonoidWithTop Γ₀] (v : AddValuation R Γ₀) {x y : R} (hx : v x < v y) :
      v (x - y) = v x
      theorem AddValuation.map_sub_eq_of_lt_right {R : Type u_3} {Γ₀ : Type u_4} [Ring R] [LinearOrderedAddCommMonoidWithTop Γ₀] (v : AddValuation R Γ₀) {x y : R} (hx : v y < v x) :
      v (x - y) = v y
      theorem AddValuation.map_eq_of_lt_sub {R : Type u_3} {Γ₀ : Type u_4} [Ring R] [LinearOrderedAddCommMonoidWithTop Γ₀] (v : AddValuation R Γ₀) {x y : R} (h : v x < v (y - x)) :
      v y = v x
      @[simp]
      theorem AddValuation.map_inv {K : Type u_1} [DivisionRing K] {Γ₀ : Type u_4} [LinearOrderedAddCommGroupWithTop Γ₀] (v : AddValuation K Γ₀) {x : K} :
      v x⁻¹ = -v x
      @[simp]
      theorem AddValuation.map_div {K : Type u_1} [DivisionRing K] {Γ₀ : Type u_4} [LinearOrderedAddCommGroupWithTop Γ₀] (v : AddValuation K Γ₀) {x y : K} :
      v (x / y) = v x - v y
      theorem AddValuation.IsEquiv.refl {R : Type u_3} {Γ₀ : Type u_4} [LinearOrderedAddCommMonoidWithTop Γ₀] [Ring R] {v : AddValuation R Γ₀} :
      theorem AddValuation.IsEquiv.symm {R : Type u_3} {Γ₀ : Type u_4} {Γ'₀ : Type u_5} [LinearOrderedAddCommMonoidWithTop Γ₀] [LinearOrderedAddCommMonoidWithTop Γ'₀] [Ring R] {v₁ : AddValuation R Γ₀} {v₂ : AddValuation R Γ'₀} (h : v₁.IsEquiv v₂) :
      v₂.IsEquiv v₁
      theorem AddValuation.IsEquiv.trans {R : Type u_3} {Γ₀ : Type u_4} {Γ'₀ : Type u_5} [LinearOrderedAddCommMonoidWithTop Γ₀] [LinearOrderedAddCommMonoidWithTop Γ'₀] [Ring R] {Γ''₀ : Type u_6} [LinearOrderedAddCommMonoidWithTop Γ''₀] {v₁ : AddValuation R Γ₀} {v₂ : AddValuation R Γ'₀} {v₃ : AddValuation R Γ''₀} (h₁₂ : v₁.IsEquiv v₂) (h₂₃ : v₂.IsEquiv v₃) :
      v₁.IsEquiv v₃
      theorem AddValuation.IsEquiv.of_eq {R : Type u_3} {Γ₀ : Type u_4} [LinearOrderedAddCommMonoidWithTop Γ₀] [Ring R] {v v' : AddValuation R Γ₀} (h : v = v') :
      v.IsEquiv v'
      theorem AddValuation.IsEquiv.map {R : Type u_3} {Γ₀ : Type u_4} {Γ'₀ : Type u_5} [LinearOrderedAddCommMonoidWithTop Γ₀] [LinearOrderedAddCommMonoidWithTop Γ'₀] [Ring R] {v v' : AddValuation R Γ₀} (f : Γ₀ →+ Γ'₀) (ht : f = ) (hf : Monotone f) (inf : Function.Injective f) (h : v.IsEquiv v') :
      (AddValuation.map f ht hf v).IsEquiv (AddValuation.map f ht hf v')
      theorem AddValuation.IsEquiv.comap {R : Type u_3} {Γ₀ : Type u_4} {Γ'₀ : Type u_5} [LinearOrderedAddCommMonoidWithTop Γ₀] [LinearOrderedAddCommMonoidWithTop Γ'₀] [Ring R] {v₁ : AddValuation R Γ₀} {v₂ : AddValuation R Γ'₀} {S : Type u_7} [Ring S] (f : S →+* R) (h : v₁.IsEquiv v₂) :

      comap preserves equivalence.

      theorem AddValuation.IsEquiv.val_eq {R : Type u_3} {Γ₀ : Type u_4} {Γ'₀ : Type u_5} [LinearOrderedAddCommMonoidWithTop Γ₀] [LinearOrderedAddCommMonoidWithTop Γ'₀] [Ring R] {v₁ : AddValuation R Γ₀} {v₂ : AddValuation R Γ'₀} (h : v₁.IsEquiv v₂) {r s : R} :
      v₁ r = v₁ s v₂ r = v₂ s
      theorem AddValuation.IsEquiv.ne_top {R : Type u_3} {Γ₀ : Type u_4} {Γ'₀ : Type u_5} [LinearOrderedAddCommMonoidWithTop Γ₀] [LinearOrderedAddCommMonoidWithTop Γ'₀] [Ring R] {v₁ : AddValuation R Γ₀} {v₂ : AddValuation R Γ'₀} (h : v₁.IsEquiv v₂) {r : R} :
      v₁ r v₂ r
      def AddValuation.supp {R : Type u_3} {Γ₀ : Type u_4} [LinearOrderedAddCommMonoidWithTop Γ₀] [CommRing R] (v : AddValuation R Γ₀) :

      The support of an additive valuation v : R → Γ₀ is the ideal of R where v x = ⊤

      Equations
      @[simp]
      theorem AddValuation.mem_supp_iff {R : Type u_3} {Γ₀ : Type u_4} [LinearOrderedAddCommMonoidWithTop Γ₀] [CommRing R] (v : AddValuation R Γ₀) (x : R) :
      x v.supp v x =
      theorem AddValuation.map_add_supp {R : Type u_3} {Γ₀ : Type u_4} [LinearOrderedAddCommMonoidWithTop Γ₀] [CommRing R] (v : AddValuation R Γ₀) (a : R) {s : R} (h : s v.supp) :
      v (a + s) = v a

      The AddValuation associated to a Valuation.

      Equations
      • One or more equations did not get rendered due to their size.

      The Valuation associated to a AddValuation.

      Equations
      • One or more equations did not get rendered due to their size.
      @[simp]
      theorem Valuation.toAddValuation_apply {R : Type u_3} {Γ₀ : Type u_5} [Ring R] [LinearOrderedCommMonoidWithZero Γ₀] (v : Valuation R Γ₀) (r : R) :
      @[simp]
      Equations
      @[simp]
      theorem Valuation.val_mrange_zero {R : Type u_3} {Γ₀ : Type u_5} [Ring R] [LinearOrderedCommMonoidWithZero Γ₀] (v : Valuation R Γ₀) :
      0 = 0
      Equations
      • One or more equations did not get rendered due to their size.