Unramified locus of an algebra #
Main results #
Algebra.unramifiedLocus: The set of primes that is unramified over the base.Algebra.basicOpen_subset_unramifiedLocus_iff:D(f)is contained in the unramified locus if and only ifA_fis unramified overR.Algebra.unramifiedLocus_eq_univ_iff: The unramified locus is the whole spectrum if and only ifAis unramified overR.Algebra.isOpen_unramifiedLocus: IfAis (essentially) of finite type overR, then the unramified locus is open.
@[reducible, inline]
abbrev
Algebra.IsUnramifiedAt
(R : Type u_1)
{A : Type u_2}
[CommRing R]
[CommRing A]
[Algebra R A]
(q : Ideal A)
[q.IsPrime]
:
We say that an R-algebra A is unramified at a prime q of A
if A_q is formally unramified over R.
If A is of finite type over R and q is lying over p, then this is equivalent to
κ(q)/κ(p) being separable and pA_q = qA_q.
See Algebra.isUnramifiedAt_iff_map_eq in RingTheory.Unramified.LocalRing
Equations
Instances For
def
Algebra.unramifiedLocus
(R A : Type u)
[CommRing R]
[CommRing A]
[Algebra R A]
:
Set (PrimeSpectrum A)
Algebra.unramifiedLocus R A is the set of primes p of A that are unramified.
Equations
- Algebra.unramifiedLocus R A = {p : PrimeSpectrum A | Algebra.IsUnramifiedAt R p.asIdeal}
Instances For
theorem
Algebra.unramifiedLocus_eq_compl_support
{R A : Type u}
[CommRing R]
[CommRing A]
[Algebra R A]
:
theorem
Algebra.basicOpen_subset_unramifiedLocus_iff
{R A : Type u}
[CommRing R]
[CommRing A]
[Algebra R A]
{f : A}
:
theorem
Algebra.unramifiedLocus_eq_univ_iff
{R A : Type u}
[CommRing R]
[CommRing A]
[Algebra R A]
:
theorem
Algebra.isOpen_unramifiedLocus
{R A : Type u}
[CommRing R]
[CommRing A]
[Algebra R A]
[EssFiniteType R A]
:
IsOpen (unramifiedLocus R A)