Documentation

Mathlib.RingTheory.Spectrum.Prime.ConstructibleSet

Constructible sets in the prime spectrum #

This file provides tooling for manipulating constructible sets in the prime spectrum of a ring.

The data of a basic constructible set s is a tuple (f, g₁, ..., gₙ)

  • f : R

    Given the data of a basic constructible set s = V(g₁, ..., gₙ) \ V(f), return f.

  • n :

    Given the data of a basic constructible set s = V(g₁, ..., gₙ) \ V(f), return n.

  • g : Fin self.nR

    Given the data of a basic constructible set s = V(g₁, ..., gₙ) \ V(f), return g.

theorem PrimeSpectrum.BasicConstructibleSetData.ext {R : Type u_1} {x y : BasicConstructibleSetData R} (f : x.f = y.f) (n : x.n = y.n) (g : HEq x.g y.g) :
x = y

Given the data of the constructible set s, build the data of the constructible set {I | {x | φ x ∈ I} ∈ s}.

Equations
@[simp]
@[simp]
theorem PrimeSpectrum.BasicConstructibleSetData.map_g {R : Type u_1} {S : Type u_2} [CommSemiring R] [CommSemiring S] (φ : R →+* S) (C : BasicConstructibleSetData R) (a✝ : Fin C.n) :
(map φ C).g a✝ = (φ C.g) a✝
@[simp]
theorem PrimeSpectrum.BasicConstructibleSetData.map_f {R : Type u_1} {S : Type u_2} [CommSemiring R] [CommSemiring S] (φ : R →+* S) (C : BasicConstructibleSetData R) :
(map φ C).f = φ C.f
theorem PrimeSpectrum.BasicConstructibleSetData.map_comp {R : Type u_1} {S : Type u_2} {T : Type u_3} [CommSemiring R] [CommSemiring S] [CommSemiring T] (φ : S →+* T) (ψ : R →+* S) (C : BasicConstructibleSetData R) :
map (φ.comp ψ) C = map φ (map ψ C)
theorem PrimeSpectrum.BasicConstructibleSetData.map_comp' {R : Type u_1} {S : Type u_2} {T : Type u_3} [CommSemiring R] [CommSemiring S] [CommSemiring T] (φ : S →+* T) (ψ : R →+* S) :
map (φ.comp ψ) = map φ map ψ

Given the data of a basic constructible set s, namely a tuple (f, g₁, ..., gₙ) such that s = V(g₁, ..., gₙ) \ V(f), return s.

Equations
@[reducible, inline]

The data of a constructible set s in the prime spectrum of a ring is finitely many tuples (f, g₁, ..., gₙ) such that s = ⋃ (f, g₁, ..., gₙ), V(g₁, ..., gₙ) \ V(f).

To obtain s from its data, use PrimeSpectrum.ConstructibleSetData.toSet.

Equations

Given the data of the constructible set s, build the data of the constructible set {I | {x | f x ∈ I} ∈ s}.

Equations
theorem PrimeSpectrum.ConstructibleSetData.map_comp {R : Type u_1} {S : Type u_2} {T : Type u_3} [CommSemiring R] [CommSemiring S] [CommSemiring T] (f : S →+* T) (g : R →+* S) (s : ConstructibleSetData R) :
map (f.comp g) s = map f (map g s)

Given the data of a constructible set s, namely finitely many tuples (f, g₁, ..., gₙ) such that s = ⋃ (f, g₁, ..., gₙ), V(g₁, ..., gₙ) \ V(f), return s.

Equations
@[simp]

The degree bound on a constructible set for Chevalley's theorem for the inclusion R ↪ R[X].

Equations
theorem PrimeSpectrum.exists_range_eq_of_isConstructible {R : Type u} [CommRing R] {s : Set (PrimeSpectrum R)} (hs : Topology.IsConstructible s) :
∃ (S : Type u) (x : CommRing S) (f : R →+* S), Set.range (comap f) = s

Stacks Tag 00F8 (without the finite presentation part)