Documentation

Mathlib.RingTheory.MvPowerSeries.Trunc

Formal (multivariate) power series - Truncation #

TODO #

def MvPowerSeries.truncFun {σ : Type u_1} {R : Type u_2} [DecidableEq σ] [CommSemiring R] (n : σ →₀ ) (φ : MvPowerSeries σ R) :

Auxiliary definition for the truncation function.

Equations
theorem MvPowerSeries.coeff_truncFun {σ : Type u_1} {R : Type u_2} [DecidableEq σ] [CommSemiring R] (n m : σ →₀ ) (φ : MvPowerSeries σ R) :
MvPolynomial.coeff m (truncFun n φ) = if m < n then (coeff R m) φ else 0
def MvPowerSeries.trunc {σ : Type u_1} (R : Type u_2) [DecidableEq σ] [CommSemiring R] (n : σ →₀ ) :

The nth truncation of a multivariate formal power series to a multivariate polynomial

If f : MvPowerSeries σ R and n : σ →₀ ℕ is a (finitely-supported) function from σ to the naturals, then trunc' R n f is the multivariable power series obtained from f by keeping only the monomials ciXiai where a i ≤ n i for all i and $a i < n ifor somei`.

Equations
theorem MvPowerSeries.coeff_trunc {σ : Type u_1} {R : Type u_2} [DecidableEq σ] [CommSemiring R] (n m : σ →₀ ) (φ : MvPowerSeries σ R) :
MvPolynomial.coeff m ((trunc R n) φ) = if m < n then (coeff R m) φ else 0
@[simp]
theorem MvPowerSeries.trunc_one {σ : Type u_1} {R : Type u_2} [DecidableEq σ] [CommSemiring R] (n : σ →₀ ) (hnn : n 0) :
(trunc R n) 1 = 1
@[simp]
theorem MvPowerSeries.trunc_C {σ : Type u_1} {R : Type u_2} [DecidableEq σ] [CommSemiring R] (n : σ →₀ ) (hnn : n 0) (a : R) :
(trunc R n) ((C σ R) a) = MvPolynomial.C a
@[simp]
theorem MvPowerSeries.trunc_C_mul {σ : Type u_1} {R : Type u_2} [DecidableEq σ] [CommSemiring R] (n : σ →₀ ) (a : R) (p : MvPowerSeries σ R) :
(trunc R n) ((C σ R) a * p) = MvPolynomial.C a * (trunc R n) p
@[simp]
theorem MvPowerSeries.trunc_map {σ : Type u_1} {R : Type u_2} {S : Type u_3} [DecidableEq σ] [CommSemiring R] [CommSemiring S] (n : σ →₀ ) (f : R →+* S) (p : MvPowerSeries σ R) :
(trunc S n) ((map σ f) p) = (MvPolynomial.map f) ((trunc R n) p)
def MvPowerSeries.truncFun' {σ : Type u_1} {R : Type u_2} [DecidableEq σ] [CommSemiring R] (n : σ →₀ ) (φ : MvPowerSeries σ R) :

Auxiliary definition for the truncation function.

Equations
theorem MvPowerSeries.coeff_truncFun' {σ : Type u_1} {R : Type u_2} [DecidableEq σ] [CommSemiring R] (n m : σ →₀ ) (φ : MvPowerSeries σ R) :
MvPolynomial.coeff m (truncFun' n φ) = if m n then (coeff R m) φ else 0

Coefficients of the truncated function.

def MvPowerSeries.trunc' {σ : Type u_1} (R : Type u_2) [DecidableEq σ] [CommSemiring R] (n : σ →₀ ) :

The nth truncation of a multivariate formal power series to a multivariate polynomial.

If f : MvPowerSeries σ R and n : σ →₀ ℕ is a (finitely-supported) function from σ to the naturals, then trunc' R n f is the multivariable power series obtained from f by keeping only the monomials ciXiai where a i ≤ n i for all i.

Equations
theorem MvPowerSeries.coeff_trunc' {σ : Type u_1} {R : Type u_2} [DecidableEq σ] [CommSemiring R] (n m : σ →₀ ) (φ : MvPowerSeries σ R) :
MvPolynomial.coeff m ((trunc' R n) φ) = if m n then (coeff R m) φ else 0

Coefficients of the truncation of a multivariate power series.

@[simp]
theorem MvPowerSeries.trunc'_one {σ : Type u_1} {R : Type u_2} [DecidableEq σ] [CommSemiring R] (n : σ →₀ ) :
(trunc' R n) 1 = 1

Truncation of the multivariate power series 1

@[simp]
theorem MvPowerSeries.trunc'_C {σ : Type u_1} {R : Type u_2} [DecidableEq σ] [CommSemiring R] (n : σ →₀ ) (a : R) :
(trunc' R n) ((C σ R) a) = MvPolynomial.C a
theorem MvPowerSeries.coeff_mul_eq_coeff_trunc'_mul_trunc' {σ : Type u_1} {R : Type u_2} [DecidableEq σ] [CommSemiring R] (n : σ →₀ ) (f g : MvPowerSeries σ R) {m : σ →₀ } (h : m n) :
(coeff R m) (f * g) = MvPolynomial.coeff m ((trunc' R n) f * (trunc' R n) g)

Coefficients of the truncation of a product of two multivariate power series

@[simp]
theorem MvPowerSeries.trunc'_C_mul {σ : Type u_1} {R : Type u_2} [DecidableEq σ] [CommSemiring R] (n : σ →₀ ) (a : R) (p : MvPowerSeries σ R) :
(trunc' R n) ((C σ R) a * p) = MvPolynomial.C a * (trunc' R n) p
@[simp]
theorem MvPowerSeries.trunc'_map {σ : Type u_1} {R : Type u_2} {S : Type u_3} [DecidableEq σ] [CommSemiring R] [CommSemiring S] (n : σ →₀ ) (f : R →+* S) (p : MvPowerSeries σ R) :
(trunc' S n) ((map σ f) p) = (MvPolynomial.map f) ((trunc' R n) p)