Documentation

Mathlib.RingTheory.Morita.Basic

Morita equivalence #

Two R-algebras A and B are Morita equivalent if the categories of modules over A and B are R-linearly equivalent. In this file, we prove that Morita equivalence is an equivalence relation and that isomorphic algebras are Morita equivalent.

Main definitions #

TODO #

References #

Tags #

Morita Equivalence, Category Theory, Noncommutative Ring, Module Theory

structure MoritaEquivalence (R : Type u₀) [CommSemiring R] (A : Type u₁) [Ring A] [Algebra R A] (B : Type u₂) [Ring B] [Algebra R B] :
Type (max (u₁ + 1) (u₂ + 1))

Let A and B be R-algebras. A Morita equivalence between A and B is an R-linear equivalence between the categories of A-modules and B-modules.

instance MoritaEquivalence.instAdditiveModuleCatFunctorEqv (R : Type u₀) [CommSemiring R] {A : Type u₁} [Ring A] [Algebra R A] {B : Type u₂} [Ring B] [Algebra R B] (e : MoritaEquivalence R A B) :
def MoritaEquivalence.refl (R : Type u₀) [CommSemiring R] (A : Type u₁) [Ring A] [Algebra R A] :

For any R-algebra A, A is Morita equivalent to itself.

Equations
def MoritaEquivalence.symm (R : Type u₀) [CommSemiring R] {A : Type u₁} [Ring A] [Algebra R A] {B : Type u₂} [Ring B] [Algebra R B] (e : MoritaEquivalence R A B) :

For any R-algebras A and B, if A is Morita equivalent to B, then B is Morita equivalent to A.

Equations
def MoritaEquivalence.trans (R : Type u₀) [CommSemiring R] {A B C : Type u₁} [Ring A] [Algebra R A] [Ring B] [Algebra R B] [Ring C] [Algebra R C] (e : MoritaEquivalence R A B) (e' : MoritaEquivalence R B C) :

For any R-algebras A, B, and C, if A is Morita equivalent to B and B is Morita equivalent to C, then A is Morita equivalent to C.

Equations
noncomputable def MoritaEquivalence.ofAlgEquiv {R : Type u₀} [CommSemiring R] {A : Type u₁} {B : Type u₂} [Ring A] [Algebra R A] [Ring B] [Algebra R B] (f : A ≃ₐ[R] B) :

Isomorphic R-algebras are Morita equivalent.

Equations
structure IsMoritaEquivalent (R : Type u₀) [CommSemiring R] (A : Type u₁) [Ring A] [Algebra R A] (B : Type u₂) [Ring B] [Algebra R B] :

Let A and B be R-algebras. We say that A and B are Morita equivalent if the categories of A-modules and B-modules are equivalent as R-linear categories.

theorem IsMoritaEquivalent.refl (R : Type u₀) [CommSemiring R] (A : Type u₁) [Ring A] [Algebra R A] :
theorem IsMoritaEquivalent.symm (R : Type u₀) [CommSemiring R] {A : Type u₁} [Ring A] [Algebra R A] {B : Type u₂} [Ring B] [Algebra R B] (h : IsMoritaEquivalent R A B) :
theorem IsMoritaEquivalent.trans (R : Type u₀) [CommSemiring R] {A B C : Type u₁} [Ring A] [Ring B] [Ring C] [Algebra R A] [Algebra R B] [Algebra R C] (h : IsMoritaEquivalent R A B) (h' : IsMoritaEquivalent R B C) :
theorem IsMoritaEquivalent.of_algEquiv (R : Type u₀) [CommSemiring R] {A : Type u₁} [Ring A] [Algebra R A] {B : Type u₂} [Ring B] [Algebra R B] (f : A ≃ₐ[R] B) :