Residue Field of local rings #
We prove basic properties of the residue field of a local ring.
Equations
A local ring homomorphism into a field can be descended onto the residue field.
Equations
The map on residue fields induced by a local homomorphism between local rings
Equations
Applying IsLocalRing.ResidueField.map to the identity ring homomorphism gives the identity
ring homomorphism.
The composite of two IsLocalRing.ResidueField.maps is the IsLocalRing.ResidueField.map of
the composite.
A ring isomorphism defines an isomorphism of residue fields.
Equations
- One or more equations did not get rendered due to their size.
The group homomorphism from RingAut R to RingAut k where k
is the residue field of R.
Equations
- IsLocalRing.ResidueField.mapAut = { toFun := IsLocalRing.ResidueField.mapEquiv, map_one' := ⋯, map_mul' := ⋯ }
If G acts on R as a MulSemiringAction, then it also acts on IsLocalRing.ResidueField R.
Equations
Alias of IsLocalRing.ker_residue.
Alias of IsLocalRing.residue_eq_zero_iff.
Alias of IsLocalRing.residue_ne_zero_iff_isUnit.
Alias of IsLocalRing.residue_surjective.
Alias of IsLocalRing.ResidueField.algebraMap_eq.
Alias of IsLocalRing.ResidueField.lift.
A local ring homomorphism into a field can be descended onto the residue field.
Alias of IsLocalRing.ResidueField.map.
The map on residue fields induced by a local homomorphism between local rings
Alias of IsLocalRing.ResidueField.map_id.
Applying IsLocalRing.ResidueField.map to the identity ring homomorphism gives the identity
ring homomorphism.
Alias of IsLocalRing.ResidueField.map_comp.
The composite of two IsLocalRing.ResidueField.maps is the IsLocalRing.ResidueField.map of
the composite.
Alias of IsLocalRing.ResidueField.map_residue.
Alias of IsLocalRing.ResidueField.map_id_apply.
Alias of IsLocalRing.ResidueField.map_map.
Alias of IsLocalRing.ResidueField.mapEquiv.
A ring isomorphism defines an isomorphism of residue fields.
Alias of IsLocalRing.ResidueField.mapEquiv.symm.
Alias of IsLocalRing.ResidueField.mapEquiv_trans.
Alias of IsLocalRing.ResidueField.mapEquiv_refl.
Alias of IsLocalRing.ResidueField.mapAut.
The group homomorphism from RingAut R to RingAut k where k
is the residue field of R.
Alias of IsLocalRing.ResidueField.residue_smul.