We gather results about the quotients of local rings.
theorem
IsLocalRing.quotient_span_eq_top_iff_span_eq_top
{R : Type u_1}
{S : Type u_2}
[CommRing R]
[CommRing S]
[Algebra R S]
[IsLocalRing R]
[Module.Finite R S]
(s : Set S)
 :
Submodule.span (R ⧸ maximalIdeal R) (⇑(Ideal.Quotient.mk (Ideal.map (algebraMap R S) (maximalIdeal R))) '' s) = ⊤ ↔   Submodule.span R s = ⊤
theorem
IsLocalRing.finrank_quotient_map
{R : Type u_1}
{S : Type u_2}
[CommRing R]
[CommRing S]
[Algebra R S]
[IsLocalRing R]
[Module.Finite R S]
[Module.Free R S]
 :
Module.finrank (R ⧸ maximalIdeal R) (S ⧸ Ideal.map (algebraMap R S) (maximalIdeal R)) = Module.finrank R S
noncomputable def
IsLocalRing.basisQuotient
{R : Type u_1}
{S : Type u_2}
[CommRing R]
[CommRing S]
[Algebra R S]
[IsLocalRing R]
[Module.Finite R S]
[Module.Free R S]
{ι : Type u_3}
[Fintype ι]
(b : Basis ι R S)
 :
Basis ι (R ⧸ maximalIdeal R) (S ⧸ Ideal.map (algebraMap R S) (maximalIdeal R))
Given a basis of S, the induced basis of S / Ideal.map (algebraMap R S) p.
Equations
- IsLocalRing.basisQuotient b = basisOfTopLeSpanOfCardEqFinrank (⇑(Ideal.Quotient.mk (Ideal.map (algebraMap R S) (IsLocalRing.maximalIdeal R))) ∘ ⇑b) ⋯ ⋯
 
theorem
IsLocalRing.basisQuotient_apply
{R : Type u_1}
{S : Type u_2}
[CommRing R]
[CommRing S]
[Algebra R S]
[IsLocalRing R]
[Module.Finite R S]
[Module.Free R S]
{ι : Type u_3}
[Fintype ι]
(b : Basis ι R S)
(i : ι)
 :
theorem
IsLocalRing.basisQuotient_repr
{R : Type u_1}
{S : Type u_2}
[CommRing R]
[CommRing S]
[Algebra R S]
[IsLocalRing R]
[Module.Finite R S]
[Module.Free R S]
{ι : Type u_4}
[Fintype ι]
(b : Basis ι R S)
(x : S)
(i : ι)
 :
((basisQuotient b).repr ((Ideal.Quotient.mk (Ideal.map (algebraMap R S) (maximalIdeal R))) x)) i =   (Ideal.Quotient.mk (maximalIdeal R)) ((b.repr x) i)
theorem
IsLocalRing.exists_maximalIdeal_pow_le_of_finite_quotient
{R : Type u_1}
[CommRing R]
[IsLocalRing R]
(I : Ideal R)
[Finite (R ⧸ I)]
 :
∃ (n : ℕ), maximalIdeal R ^ n ≤ I
theorem
IsLocalRing.finite_quotient_iff
{R : Type u_1}
[CommRing R]
[IsLocalRing R]
[IsNoetherianRing R]
[Finite (ResidueField R)]
{I : Ideal R}
 :
@[deprecated IsLocalRing.quotient_span_eq_top_iff_span_eq_top (since := "2024-11-11")]
theorem
LocalRing.quotient_span_eq_top_iff_span_eq_top
{R : Type u_1}
{S : Type u_2}
[CommRing R]
[CommRing S]
[Algebra R S]
[IsLocalRing R]
[Module.Finite R S]
(s : Set S)
 :
Submodule.span (R ⧸ IsLocalRing.maximalIdeal R)
      (⇑(Ideal.Quotient.mk (Ideal.map (algebraMap R S) (IsLocalRing.maximalIdeal R))) '' s) =     ⊤ ↔   Submodule.span R s = ⊤
@[deprecated IsLocalRing.finrank_quotient_map (since := "2024-11-11")]
theorem
LocalRing.finrank_quotient_map
{R : Type u_1}
{S : Type u_2}
[CommRing R]
[CommRing S]
[Algebra R S]
[IsLocalRing R]
[Module.Finite R S]
[Module.Free R S]
 :
Module.finrank (R ⧸ IsLocalRing.maximalIdeal R) (S ⧸ Ideal.map (algebraMap R S) (IsLocalRing.maximalIdeal R)) =   Module.finrank R S
Alias of IsLocalRing.finrank_quotient_map.
@[deprecated IsLocalRing.basisQuotient (since := "2024-11-11")]
def
LocalRing.basisQuotient
{R : Type u_1}
{S : Type u_2}
[CommRing R]
[CommRing S]
[Algebra R S]
[IsLocalRing R]
[Module.Finite R S]
[Module.Free R S]
{ι : Type u_3}
[Fintype ι]
(b : Basis ι R S)
 :
Basis ι (R ⧸ IsLocalRing.maximalIdeal R) (S ⧸ Ideal.map (algebraMap R S) (IsLocalRing.maximalIdeal R))
Alias of IsLocalRing.basisQuotient.
Given a basis of S, the induced basis of S / Ideal.map (algebraMap R S) p.
Equations
@[deprecated IsLocalRing.basisQuotient_apply (since := "2024-11-11")]
theorem
LocalRing.basisQuotient_apply
{R : Type u_1}
{S : Type u_2}
[CommRing R]
[CommRing S]
[Algebra R S]
[IsLocalRing R]
[Module.Finite R S]
[Module.Free R S]
{ι : Type u_3}
[Fintype ι]
(b : Basis ι R S)
(i : ι)
 :
(IsLocalRing.basisQuotient b) i = (Ideal.Quotient.mk (Ideal.map (algebraMap R S) (IsLocalRing.maximalIdeal R))) (b i)
Alias of IsLocalRing.basisQuotient_apply.
@[deprecated IsLocalRing.basisQuotient_repr (since := "2024-11-11")]
theorem
LocalRing.basisQuotient_repr
{R : Type u_1}
{S : Type u_2}
[CommRing R]
[CommRing S]
[Algebra R S]
[IsLocalRing R]
[Module.Finite R S]
[Module.Free R S]
{ι : Type u_4}
[Fintype ι]
(b : Basis ι R S)
(x : S)
(i : ι)
 :
((IsLocalRing.basisQuotient b).repr ((Ideal.Quotient.mk (Ideal.map (algebraMap R S) (IsLocalRing.maximalIdeal R))) x))
    i =   (Ideal.Quotient.mk (IsLocalRing.maximalIdeal R)) ((b.repr x) i)
Alias of IsLocalRing.basisQuotient_repr.