Documentation

Mathlib.RingTheory.Kaehler.TensorProduct

Kaehler differential module under base change #

Main results #

@[reducible, inline]
noncomputable abbrev KaehlerDifferential.mulActionBaseChange (R : Type u_1) (S : Type u_2) (A : Type u_3) [CommRing R] [CommRing S] [Algebra R S] [CommRing A] [Algebra R A] :

(Implementation). A-action on S ⊗[R] Ω[A⁄R].

Equations
@[simp]
theorem KaehlerDifferential.mulActionBaseChange_smul_tmul (R : Type u_1) (S : Type u_2) (A : Type u_3) [CommRing R] [CommRing S] [Algebra R S] [CommRing A] [Algebra R A] (a : A) (s : S) (x : Ω[AR]) :
a s ⊗ₜ[R] x = s ⊗ₜ[R] (a x)
theorem KaehlerDifferential.mulActionBaseChange_smul_zero (R : Type u_1) (S : Type u_2) (A : Type u_3) [CommRing R] [CommRing S] [Algebra R S] [CommRing A] [Algebra R A] (a : A) :
a 0 = 0
theorem KaehlerDifferential.mulActionBaseChange_smul_add (R : Type u_1) (S : Type u_2) (A : Type u_3) [CommRing R] [CommRing S] [Algebra R S] [CommRing A] [Algebra R A] (a : A) (x y : TensorProduct R S (Ω[AR])) :
a (x + y) = a x + a y
@[reducible, inline]
noncomputable abbrev KaehlerDifferential.moduleBaseChange (R : Type u_1) (S : Type u_2) (A : Type u_3) [CommRing R] [CommRing S] [Algebra R S] [CommRing A] [Algebra R A] :

(Implementation). A-module structure on S ⊗[R] Ω[A⁄R].

Equations
@[reducible]
noncomputable def KaehlerDifferential.moduleBaseChange' (R : Type u_1) (S : Type u_2) (A : Type u_3) (B : Type u_4) [CommRing R] [CommRing S] [Algebra R S] [CommRing A] [CommRing B] [Algebra R A] [Algebra R B] [Algebra A B] [Algebra S B] [IsScalarTower R A B] [IsScalarTower R S B] [Algebra.IsPushout R S A B] :

(Implementation). B = S ⊗[R] A-module structure on S ⊗[R] Ω[A⁄R].

Equations
  • One or more equations did not get rendered due to their size.
instance KaehlerDifferential.instIsScalarTowerTensorProduct_1 (R : Type u_1) (S : Type u_2) (A : Type u_3) (B : Type u_4) [CommRing R] [CommRing S] [Algebra R S] [CommRing A] [CommRing B] [Algebra R A] [Algebra R B] [Algebra A B] [Algebra S B] [IsScalarTower R A B] [IsScalarTower R S B] [Algebra.IsPushout R S A B] :
instance KaehlerDifferential.instIsScalarTowerTensorProduct_2 (R : Type u_1) (S : Type u_2) (A : Type u_3) (B : Type u_4) [CommRing R] [CommRing S] [Algebra R S] [CommRing A] [CommRing B] [Algebra R A] [Algebra R B] [Algebra A B] [Algebra S B] [IsScalarTower R A B] [IsScalarTower R S B] [Algebra.IsPushout R S A B] :
theorem KaehlerDifferential.map_liftBaseChange_smul (R : Type u_1) (S : Type u_2) (A : Type u_3) (B : Type u_4) [CommRing R] [CommRing S] [Algebra R S] [CommRing A] [CommRing B] [Algebra R A] [Algebra R B] [Algebra A B] [Algebra S B] [IsScalarTower R A B] [IsScalarTower R S B] [h : Algebra.IsPushout R S A B] (b : B) (x : TensorProduct R S (Ω[AR])) :
(LinearMap.liftBaseChange S (R (map R S A B))) (b x) = b (LinearMap.liftBaseChange S (R (map R S A B))) x
noncomputable def KaehlerDifferential.derivationTensorProduct (R : Type u_1) (S : Type u_2) (A : Type u_3) (B : Type u_4) [CommRing R] [CommRing S] [Algebra R S] [CommRing A] [CommRing B] [Algebra R A] [Algebra R B] [Algebra A B] [Algebra S B] [IsScalarTower R A B] [IsScalarTower R S B] [h : Algebra.IsPushout R S A B] :

(Implementation). The S-derivation B = S ⊗[R] A to S ⊗[R] Ω[A⁄R] sending a ⊗ b to a ⊗ d b.

Equations
theorem KaehlerDifferential.derivationTensorProduct_algebraMap (R : Type u_1) (S : Type u_2) (A : Type u_3) (B : Type u_4) [CommRing R] [CommRing S] [Algebra R S] [CommRing A] [CommRing B] [Algebra R A] [Algebra R B] [Algebra A B] [Algebra S B] [IsScalarTower R A B] [IsScalarTower R S B] [Algebra.IsPushout R S A B] (x : A) :
(derivationTensorProduct R S A B) ((algebraMap A B) x) = 1 ⊗ₜ[R] (D R A) x
noncomputable def KaehlerDifferential.tensorKaehlerEquiv (R : Type u_1) (S : Type u_2) (A : Type u_3) (B : Type u_4) [CommRing R] [CommRing S] [Algebra R S] [CommRing A] [CommRing B] [Algebra R A] [Algebra R B] [Algebra A B] [Algebra S B] [IsScalarTower R A B] [IsScalarTower R S B] [h : Algebra.IsPushout R S A B] :

The canonical isomorphism (S ⊗[R] Ω[A⁄R]) ≃ₗ[S] Ω[B⁄S] for B = S ⊗[R] A.

Equations
  • One or more equations did not get rendered due to their size.
@[simp]
theorem KaehlerDifferential.tensorKaehlerEquiv_symm_apply (R : Type u_1) (S : Type u_2) (A : Type u_3) (B : Type u_4) [CommRing R] [CommRing S] [Algebra R S] [CommRing A] [CommRing B] [Algebra R A] [Algebra R B] [Algebra A B] [Algebra S B] [IsScalarTower R A B] [IsScalarTower R S B] [h : Algebra.IsPushout R S A B] (a : Ω[BS]) :
@[simp]
theorem KaehlerDifferential.tensorKaehlerEquiv_tmul (R : Type u_1) (S : Type u_2) (A : Type u_3) (B : Type u_4) [CommRing R] [CommRing S] [Algebra R S] [CommRing A] [CommRing B] [Algebra R A] [Algebra R B] [Algebra A B] [Algebra S B] [IsScalarTower R A B] [IsScalarTower R S B] [Algebra.IsPushout R S A B] (a : S) (b : Ω[AR]) :
(tensorKaehlerEquiv R S A B) (a ⊗ₜ[R] b) = a (map R S A B) b
theorem KaehlerDifferential.isBaseChange (R : Type u_1) (S : Type u_2) (A : Type u_3) (B : Type u_4) [CommRing R] [CommRing S] [Algebra R S] [CommRing A] [CommRing B] [Algebra R A] [Algebra R B] [Algebra A B] [Algebra S B] [IsScalarTower R A B] [IsScalarTower R S B] [h : Algebra.IsPushout R S A B] :
IsBaseChange S (R (map R S A B))

If B is the tensor product of S and A over R, then Ω[B⁄S] is the base change of Ω[A⁄R] along R → S.

instance KaehlerDifferential.isLocalizedModule (R : Type u_1) (S : Type u_2) (A : Type u_3) (B : Type u_4) [CommRing R] [CommRing S] [Algebra R S] [CommRing A] [CommRing B] [Algebra R A] [Algebra R B] [Algebra A B] [Algebra S B] [IsScalarTower R A B] [IsScalarTower R S B] (p : Submonoid R) [IsLocalization p S] [IsLocalization (Algebra.algebraMapSubmonoid A p) B] :
IsLocalizedModule p (R (map R S A B))
instance KaehlerDifferential.isLocalizedModule_of_isLocalizedModule (R : Type u_1) (S : Type u_2) (A : Type u_3) (B : Type u_4) [CommRing R] [CommRing S] [Algebra R S] [CommRing A] [CommRing B] [Algebra R A] [Algebra R B] [Algebra A B] [Algebra S B] [IsScalarTower R A B] [IsScalarTower R S B] (p : Submonoid R) [IsLocalization p S] [IsLocalizedModule p (IsScalarTower.toAlgHom R A B).toLinearMap] :
IsLocalizedModule p (R (map R S A B))