Documentation

Mathlib.RingTheory.Extension.Cotangent.Basic

Naive cotangent complex associated to a presentation. #

Given a presentation 0 → I → R[x₁,...,xₙ] → S → 0 (or equivalently a closed embedding S ↪ Aⁿ defined by I), we may define the (naive) cotangent complex I/I² → ⨁ᵢ S dxᵢ → Ω[S/R] → 0.

Main results #

Implementation detail #

We actually develop these material for general extensions (i.e. surjection P → S) so that we can apply them to infinitesimal smooth (or versal) extensions later.

@[reducible, inline]
abbrev Algebra.Extension.CotangentSpace {R : Type u} {S : Type v} [CommRing R] [CommRing S] [Algebra R S] (P : Extension R S) :
Type (max w v)

The cotangent space on P = R[X]. This is isomorphic to Sⁿ with n being the number of variables of P.

Equations
noncomputable def Algebra.Extension.cotangentComplex {R : Type u} {S : Type v} [CommRing R] [CommRing S] [Algebra R S] (P : Extension R S) :

The cotangent complex given by a presentation R[X] → S (i.e. a closed embedding S ↪ Aⁿ).

Equations
  • One or more equations did not get rendered due to their size.
@[simp]
noncomputable def Algebra.Extension.CotangentSpace.map {R : Type u} {S : Type v} [CommRing R] [CommRing S] [Algebra R S] {P : Extension R S} {R' : Type u'} {S' : Type v'} [CommRing R'] [CommRing S'] [Algebra R' S'] {P' : Extension R' S'} [Algebra R R'] [Algebra S S'] [Algebra R S'] [IsScalarTower R R' S'] (f : P.Hom P') :

This is the map on the cotangent space associated to a map of presentation. The matrix associated to this map is the Jacobian matrix. See CotangentSpace.repr_map.

Equations
@[simp]
theorem Algebra.Extension.CotangentSpace.map_tmul {R : Type u} {S : Type v} [CommRing R] [CommRing S] [Algebra R S] {P : Extension R S} {R' : Type u'} {S' : Type v'} [CommRing R'] [CommRing S'] [Algebra R' S'] {P' : Extension R' S'} [Algebra R R'] [Algebra S S'] [Algebra R S'] [IsScalarTower R R' S'] (f : P.Hom P') (x : S) (y : P.Ring) :
theorem Algebra.Extension.CotangentSpace.map_comp {R : Type u} {S : Type v} [CommRing R] [CommRing S] [Algebra R S] {P : Extension R S} {R' : Type u'} {S' : Type v'} [CommRing R'] [CommRing S'] [Algebra R' S'] {P' : Extension R' S'} [Algebra R R'] [Algebra S S'] [Algebra R S'] [IsScalarTower R R' S'] {R'' : Type u''} {S'' : Type v''} [CommRing R''] [CommRing S''] [Algebra R'' S''] {P'' : Extension R'' S''} [Algebra R R''] [Algebra S S''] [Algebra R S''] [IsScalarTower R R'' S''] [Algebra R' R''] [Algebra S' S''] [Algebra R' S''] [IsScalarTower R' R'' S''] [IsScalarTower R R' R''] [IsScalarTower S S' S''] (f : P.Hom P') (g : P'.Hom P'') :
theorem Algebra.Extension.CotangentSpace.map_comp_apply {R : Type u} {S : Type v} [CommRing R] [CommRing S] [Algebra R S] {P : Extension R S} {R' : Type u'} {S' : Type v'} [CommRing R'] [CommRing S'] [Algebra R' S'] {P' : Extension R' S'} [Algebra R R'] [Algebra S S'] [Algebra R S'] [IsScalarTower R R' S'] {R'' : Type u''} {S'' : Type v''} [CommRing R''] [CommRing S''] [Algebra R'' S''] {P'' : Extension R'' S''} [Algebra R R''] [Algebra S S''] [Algebra R S''] [IsScalarTower R R'' S''] [Algebra R' R''] [Algebra S' S''] [Algebra R' S''] [IsScalarTower R' R'' S''] [IsScalarTower R R' R''] [IsScalarTower S S' S''] (f : P.Hom P') (g : P'.Hom P'') (x : P.CotangentSpace) :
theorem Algebra.Extension.CotangentSpace.map_cotangentComplex {R : Type u} {S : Type v} [CommRing R] [CommRing S] [Algebra R S] {P : Extension R S} {R' : Type u'} {S' : Type v'} [CommRing R'] [CommRing S'] [Algebra R' S'] {P' : Extension R' S'} [Algebra R R'] [Algebra S S'] [Algebra R S'] [IsScalarTower R R' S'] (f : P.Hom P') (x : P.Cotangent) :
theorem Algebra.Extension.CotangentSpace.map_comp_cotangentComplex {R : Type u} {S : Type v} [CommRing R] [CommRing S] [Algebra R S] {P : Extension R S} {R' : Type u'} {S' : Type v'} [CommRing R'] [CommRing S'] [Algebra R' S'] {P' : Extension R' S'} [Algebra R R'] [Algebra S S'] [Algebra R S'] [IsScalarTower R R' S'] (f : P.Hom P') :
theorem Algebra.Extension.Hom.sub_aux {R : Type u} {S : Type v} [CommRing R] [CommRing S] [Algebra R S] {P : Extension R S} {R' : Type u'} {S' : Type v'} [CommRing R'] [CommRing S'] [Algebra R' S'] {P' : Extension R' S'} [Algebra R R'] [Algebra S S'] [Algebra R S'] [IsScalarTower R R' S'] (f g : P.Hom P') (x y : P.Ring) :
f.toAlgHom (x * y) - g.toAlgHom (x * y) - (P'.σ ((algebraMap P.Ring S') x) * (f.toAlgHom y - g.toAlgHom y) + P'.σ ((algebraMap P.Ring S') y) * (f.toAlgHom x - g.toAlgHom x)) P'.ker ^ 2
noncomputable def Algebra.Extension.Hom.subToKer {R : Type u} {S : Type v} [CommRing R] [CommRing S] [Algebra R S] {P : Extension R S} {R' : Type u'} {S' : Type v'} [CommRing R'] [CommRing S'] [Algebra R' S'] {P' : Extension R' S'} [Algebra R R'] [Algebra S S'] [Algebra R S'] [IsScalarTower R R' S'] (f g : P.Hom P') :
P.Ring →ₗ[R] P'.ker

If f and g are two maps P → P' between presentations, then the image of f - g is in the kernel of P' → S.

Equations
@[simp]
theorem Algebra.Extension.Hom.subToKer_apply_coe {R : Type u} {S : Type v} [CommRing R] [CommRing S] [Algebra R S] {P : Extension R S} {R' : Type u'} {S' : Type v'} [CommRing R'] [CommRing S'] [Algebra R' S'] {P' : Extension R' S'} [Algebra R R'] [Algebra S S'] [Algebra R S'] [IsScalarTower R R' S'] (f g : P.Hom P') (c : P.Ring) :
((f.subToKer g) c) = f.toRingHom c - g.toRingHom c
noncomputable def Algebra.Extension.Hom.sub {R : Type u} {S : Type v} [CommRing R] [CommRing S] [Algebra R S] {P : Extension R S} {R' : Type u'} {S' : Type v'} [CommRing R'] [CommRing S'] [Algebra R' S'] {P' : Extension R' S'} [Algebra R R'] [Algebra S S'] [Algebra R S'] [IsScalarTower R R' S'] [IsScalarTower R S S'] (f g : P.Hom P') :

If f and g are two maps P → P' between presentations, their difference induces a map P.CotangentSpace →ₗ[S] P'.Cotangent that makes two maps between the cotangent complexes homotopic.

Equations
  • One or more equations did not get rendered due to their size.
theorem Algebra.Extension.Hom.sub_one_tmul {R : Type u} {S : Type v} [CommRing R] [CommRing S] [Algebra R S] {P : Extension R S} {R' : Type u'} {S' : Type v'} [CommRing R'] [CommRing S'] [Algebra R' S'] {P' : Extension R' S'} [Algebra R R'] [Algebra S S'] [Algebra R S'] [IsScalarTower R R' S'] [IsScalarTower R S S'] (f g : P.Hom P') (x : P.Ring) :
@[simp]
theorem Algebra.Extension.Hom.sub_tmul {R : Type u} {S : Type v} [CommRing R] [CommRing S] [Algebra R S] {P : Extension R S} {R' : Type u'} {S' : Type v'} [CommRing R'] [CommRing S'] [Algebra R' S'] {P' : Extension R' S'} [Algebra R R'] [Algebra S S'] [Algebra R S'] [IsScalarTower R R' S'] [IsScalarTower R S S'] (f g : P.Hom P') (r : S) (x : P.Ring) :
theorem Algebra.Extension.CotangentSpace.map_sub_map {R : Type u} {S : Type v} [CommRing R] [CommRing S] [Algebra R S] {P : Extension R S} {R' : Type u'} {S' : Type v'} [CommRing R'] [CommRing S'] [Algebra R' S'] {P' : Extension R' S'} [Algebra R R'] [Algebra S S'] [Algebra R S'] [IsScalarTower R R' S'] [IsScalarTower R S S'] (f g : P.Hom P') :
theorem Algebra.Extension.Cotangent.map_sub_map {R : Type u} {S : Type v} [CommRing R] [CommRing S] [Algebra R S] {P : Extension R S} {R' : Type u'} {S' : Type v'} [CommRing R'] [CommRing S'] [Algebra R' S'] {P' : Extension R' S'} [Algebra R R'] [Algebra S S'] [Algebra R S'] [IsScalarTower R R' S'] [IsScalarTower R S S'] (f g : P.Hom P') :
@[reducible, inline]
noncomputable abbrev Algebra.Extension.toKaehler {R : Type u} {S : Type v} [CommRing R] [CommRing S] [Algebra R S] (P : Extension R S) :

The projection map from the relative cotangent space to the module of differentials.

Equations
noncomputable def Algebra.Extension.H1Cotangent {R : Type u} {S : Type v} [CommRing R] [CommRing S] [Algebra R S] (P : Extension R S) :

The first homology of the (naive) cotangent complex of S over R, induced by a given presentation 0 → I → P → R → 0, defined as the kernel of I/I² → S ⊗[P] Ω[P⁄R].

Equations
@[simp]
theorem Algebra.Extension.H1Cotangent.val_add {R : Type u} {S : Type v} [CommRing R] [CommRing S] [Algebra R S] {P : Extension R S} (x y : P.H1Cotangent) :
↑(x + y) = x + y
@[simp]
theorem Algebra.Extension.H1Cotangent.val_zero {R : Type u} {S : Type v} [CommRing R] [CommRing S] [Algebra R S] {P : Extension R S} :
0 = 0
@[simp]
theorem Algebra.Extension.H1Cotangent.val_smul {R : Type u} {S : Type v} [CommRing R] [CommRing S] [Algebra R S] {P : Extension R S} {R₀ : Type u_1} [CommRing R₀] [Algebra R₀ S] [Module R₀ P.Cotangent] [IsScalarTower R₀ S P.Cotangent] (r : R₀) (x : P.H1Cotangent) :
↑(r x) = r x
instance Algebra.Extension.instIsScalarTowerH1CotangentOfCotangent {R : Type u} {S : Type v} [CommRing R] [CommRing S] [Algebra R S] {P : Extension R S} {R₁ : Type u_1} {R₂ : Type u_2} [CommRing R₁] [CommRing R₂] [Algebra R₁ R₂] [Algebra R₁ S] [Algebra R₂ S] [Module R₁ P.Cotangent] [IsScalarTower R₁ S P.Cotangent] [Module R₂ P.Cotangent] [IsScalarTower R₂ S P.Cotangent] [IsScalarTower R₁ R₂ P.Cotangent] :
noncomputable def Algebra.Extension.h1Cotangentι {R : Type u} {S : Type v} [CommRing R] [CommRing S] [Algebra R S] {P : Extension R S} :

The inclusion of H¹(L_{S/R}) into the conormal space of a presentation.

Equations
@[simp]
theorem Algebra.Extension.h1Cotangentι_apply {R : Type u} {S : Type v} [CommRing R] [CommRing S] [Algebra R S] {P : Extension R S} (self : (LinearMap.ker P.cotangentComplex)) :
h1Cotangentι self = self
theorem Algebra.Extension.h1Cotangentι_ext {R : Type u} {S : Type v} [CommRing R] [CommRing S] [Algebra R S] {P : Extension R S} (x y : P.H1Cotangent) (e : x = y) :
x = y
theorem Algebra.Extension.h1Cotangentι_ext_iff {R : Type u} {S : Type v} [CommRing R] [CommRing S] [Algebra R S] {P : Extension R S} {x y : P.H1Cotangent} :
x = y x = y
noncomputable def Algebra.Extension.H1Cotangent.map {R : Type u} {S : Type v} [CommRing R] [CommRing S] [Algebra R S] {R' : Type u'} {S' : Type v'} [CommRing R'] [CommRing S'] [Algebra R' S'] {P' : Extension R' S'} [Algebra R R'] [Algebra S S'] [Algebra R S'] [IsScalarTower R R' S'] {P : Extension R S} (f : P.Hom P') :

The induced map on the first homology of the (naive) cotangent complex.

Equations
@[simp]
theorem Algebra.Extension.H1Cotangent.map_apply_coe {R : Type u} {S : Type v} [CommRing R] [CommRing S] [Algebra R S] {R' : Type u'} {S' : Type v'} [CommRing R'] [CommRing S'] [Algebra R' S'] {P' : Extension R' S'} [Algebra R R'] [Algebra S S'] [Algebra R S'] [IsScalarTower R R' S'] {P : Extension R S} (f : P.Hom P') (c : (LinearMap.ker P.cotangentComplex)) :
((map f) c) = (Cotangent.map f) c
theorem Algebra.Extension.H1Cotangent.map_eq {R : Type u} {S : Type v} [CommRing R] [CommRing S] [Algebra R S] {R' : Type u'} {S' : Type v'} [CommRing R'] [CommRing S'] [Algebra R' S'] {P' : Extension R' S'} [Algebra R R'] [Algebra S S'] [Algebra R S'] [IsScalarTower R R' S'] [IsScalarTower R S S'] {P : Extension R S} (f g : P.Hom P') :
map f = map g
@[simp]
theorem Algebra.Extension.H1Cotangent.map_comp {R : Type u} {S : Type v} [CommRing R] [CommRing S] [Algebra R S] {R' : Type u'} {S' : Type v'} [CommRing R'] [CommRing S'] [Algebra R' S'] {P' : Extension R' S'} [Algebra R R'] [Algebra S S'] [Algebra R S'] [IsScalarTower R R' S'] {R'' : Type u''} {S'' : Type v''} [CommRing R''] [CommRing S''] [Algebra R'' S''] {P'' : Extension R'' S''} [Algebra R R''] [Algebra S S''] [Algebra R S''] [IsScalarTower R R'' S''] [Algebra R' R''] [Algebra S' S''] [Algebra R' S''] [IsScalarTower R' R'' S''] [IsScalarTower R R' R''] [IsScalarTower S S' S''] {P : Extension R S} (f : P.Hom P') (g : P'.Hom P'') :
map (g.comp f) = S (map g) ∘ₗ map f
noncomputable def Algebra.Extension.H1Cotangent.equiv {R : Type u} {S : Type v} [CommRing R] [CommRing S] [Algebra R S] {P₁ : Extension R S} {P₂ : Extension R S} (f₁ : P₁.Hom P₂) (f₂ : P₂.Hom P₁) :

Maps P₁ → P₂ and P₂ → P₁ between extensions induce an isomorphism between H¹(L_P₁) and H¹(L_P₂).

Equations
@[simp]
theorem Algebra.Extension.H1Cotangent.equiv_apply {R : Type u} {S : Type v} [CommRing R] [CommRing S] [Algebra R S] {P₁ : Extension R S} {P₂ : Extension R S} (f₁ : P₁.Hom P₂) (f₂ : P₂.Hom P₁) (c : (LinearMap.ker P₁.cotangentComplex)) :
(equiv f₁ f₂) c = (Cotangent.map f₁) c,
@[simp]
theorem Algebra.Generators.repr_CotangentSpaceMap {R : Type u} {S : Type v} [CommRing R] [CommRing S] [Algebra R S] {P : Generators R S} {R' : Type u'} {S' : Type v'} [CommRing R'] [CommRing S'] [Algebra R' S'] {P' : Generators R' S'} [Algebra R R'] [Algebra S S'] [Algebra R S'] [IsScalarTower R R' S'] [IsScalarTower R S S'] (f : P.Hom P') (i : P.vars) (j : P'.vars) :

H¹(L_{S/R}) is independent of the presentation chosen.

Equations
@[reducible, inline]
abbrev Algebra.H1Cotangent (R : Type u) (S : Type v) [CommRing R] [CommRing S] [Algebra R S] :
Type (max u v)

H¹(L_{S/R}), the first homology of the (naive) cotangent complex of S over R.

Equations
noncomputable def Algebra.H1Cotangent.map (R : Type u) (S : Type v) [CommRing R] [CommRing S] [Algebra R S] (S' : Type u_1) [CommRing S'] [Algebra R S'] (T : Type w) [CommRing T] [Algebra R T] [Algebra S T] [IsScalarTower R S T] [Algebra S' T] [IsScalarTower R S' T] :

The induced map on the first homology of the (naive) cotangent complex of S over R.

Equations
noncomputable def Algebra.H1Cotangent.mapEquiv (R : Type u) (S : Type v) [CommRing R] [CommRing S] [Algebra R S] (S' : Type u_1) [CommRing S'] [Algebra R S'] (e : S ≃ₐ[R] S') :

Isomorphic algebras induce isomorphic H¹(L_{S/R}).

Equations
  • One or more equations did not get rendered due to their size.
@[reducible, inline]
noncomputable abbrev Algebra.Generators.equivH1Cotangent {R : Type u} {S : Type v} [CommRing R] [CommRing S] [Algebra R S] (P : Generators R S) :

H¹(L_{S/R}) is independent of the presentation chosen.

Equations