Documentation

Mathlib.RingTheory.Bialgebra.TensorProduct

Tensor products of bialgebras #

We define the data in the monoidal structure on the category of bialgebras - e.g. the bialgebra instance on a tensor product of bialgebras, and the tensor product of two BialgHoms as a BialgHom. This is done by combining the corresponding API for coalgebras and algebras.

noncomputable instance TensorProduct.instBialgebra (R : Type u_1) (S : Type u_2) (A : Type u_3) (B : Type u_4) [CommSemiring R] [CommSemiring S] [Semiring A] [Semiring B] [Bialgebra S A] [Bialgebra R B] [Algebra R A] [Algebra R S] [IsScalarTower R S A] :
Equations
noncomputable def Bialgebra.TensorProduct.map {R : Type u_1} {S : Type u_2} {A : Type u_3} {B : Type u_4} {C : Type u_5} {D : Type u_6} [CommSemiring R] [CommSemiring S] [Semiring A] [Semiring B] [Bialgebra S A] [Bialgebra R B] [Algebra R A] [Algebra R S] [IsScalarTower R S A] [Semiring C] [Semiring D] [Bialgebra S C] [Bialgebra R D] [Algebra R C] [IsScalarTower R S C] (f : A →ₐc[S] C) (g : B →ₐc[R] D) :

The tensor product of two bialgebra morphisms as a bialgebra morphism.

Equations
@[simp]
theorem Bialgebra.TensorProduct.map_tmul {R : Type u_1} {S : Type u_2} {A : Type u_3} {B : Type u_4} {C : Type u_5} {D : Type u_6} [CommSemiring R] [CommSemiring S] [Semiring A] [Semiring B] [Bialgebra S A] [Bialgebra R B] [Algebra R A] [Algebra R S] [IsScalarTower R S A] [Semiring C] [Semiring D] [Bialgebra S C] [Bialgebra R D] [Algebra R C] [IsScalarTower R S C] (f : A →ₐc[S] C) (g : B →ₐc[R] D) (x : A) (y : B) :
(map f g) (x ⊗ₜ[R] y) = f x ⊗ₜ[R] g y
@[simp]
theorem Bialgebra.TensorProduct.map_toCoalgHom {R : Type u_1} {S : Type u_2} {A : Type u_3} {B : Type u_4} {C : Type u_5} {D : Type u_6} [CommSemiring R] [CommSemiring S] [Semiring A] [Semiring B] [Bialgebra S A] [Bialgebra R B] [Algebra R A] [Algebra R S] [IsScalarTower R S A] [Semiring C] [Semiring D] [Bialgebra S C] [Bialgebra R D] [Algebra R C] [IsScalarTower R S C] (f : A →ₐc[S] C) (g : B →ₐc[R] D) :
(map f g) = Coalgebra.TensorProduct.map f g
@[simp]
theorem Bialgebra.TensorProduct.map_toAlgHom {R : Type u_1} {S : Type u_2} {A : Type u_3} {B : Type u_4} {C : Type u_5} {D : Type u_6} [CommSemiring R] [CommSemiring S] [Semiring A] [Semiring B] [Bialgebra S A] [Bialgebra R B] [Algebra R A] [Algebra R S] [IsScalarTower R S A] [Semiring C] [Semiring D] [Bialgebra S C] [Bialgebra R D] [Algebra R C] [IsScalarTower R S C] (f : A →ₐc[S] C) (g : B →ₐc[R] D) :
(map f g) = Algebra.TensorProduct.map f g
noncomputable def Bialgebra.TensorProduct.assoc (R : Type u_1) (S : Type u_2) (A : Type u_3) (C : Type u_5) (D : Type u_6) [CommSemiring R] [CommSemiring S] [Semiring A] [Bialgebra S A] [Algebra R A] [Algebra R S] [IsScalarTower R S A] [Semiring C] [Semiring D] [Bialgebra S C] [Bialgebra R D] [Algebra R C] [IsScalarTower R S C] :

The associator for tensor products of R-bialgebras, as a bialgebra equivalence.

Equations
@[simp]
theorem Bialgebra.TensorProduct.assoc_tmul {R : Type u_1} {S : Type u_2} {A : Type u_3} {C : Type u_5} {D : Type u_6} [CommSemiring R] [CommSemiring S] [Semiring A] [Bialgebra S A] [Algebra R A] [Algebra R S] [IsScalarTower R S A] [Semiring C] [Semiring D] [Bialgebra S C] [Bialgebra R D] [Algebra R C] [IsScalarTower R S C] (x : A) (y : C) (z : D) :
(TensorProduct.assoc R S A C D) ((x ⊗ₜ[S] y) ⊗ₜ[R] z) = x ⊗ₜ[S] y ⊗ₜ[R] z
@[simp]
theorem Bialgebra.TensorProduct.assoc_symm_tmul {R : Type u_1} {S : Type u_2} {A : Type u_3} {C : Type u_5} {D : Type u_6} [CommSemiring R] [CommSemiring S] [Semiring A] [Bialgebra S A] [Algebra R A] [Algebra R S] [IsScalarTower R S A] [Semiring C] [Semiring D] [Bialgebra S C] [Bialgebra R D] [Algebra R C] [IsScalarTower R S C] (x : A) (y : C) (z : D) :
(TensorProduct.assoc R S A C D).symm (x ⊗ₜ[S] y ⊗ₜ[R] z) = (x ⊗ₜ[S] y) ⊗ₜ[R] z
@[simp]
theorem Bialgebra.TensorProduct.assoc_toCoalgEquiv {R : Type u_1} {S : Type u_2} {A : Type u_3} {C : Type u_5} {D : Type u_6} [CommSemiring R] [CommSemiring S] [Semiring A] [Bialgebra S A] [Algebra R A] [Algebra R S] [IsScalarTower R S A] [Semiring C] [Semiring D] [Bialgebra S C] [Bialgebra R D] [Algebra R C] [IsScalarTower R S C] :
@[simp]
theorem Bialgebra.TensorProduct.assoc_toAlgEquiv {R : Type u_1} {S : Type u_2} {A : Type u_3} {C : Type u_5} {D : Type u_6} [CommSemiring R] [CommSemiring S] [Semiring A] [Bialgebra S A] [Algebra R A] [Algebra R S] [IsScalarTower R S A] [Semiring C] [Semiring D] [Bialgebra S C] [Bialgebra R D] [Algebra R C] [IsScalarTower R S C] :
noncomputable def Bialgebra.TensorProduct.lid (R : Type u_1) (B : Type u_4) [CommSemiring R] [Semiring B] [Bialgebra R B] :

The base ring is a left identity for the tensor product of bialgebras, up to bialgebra equivalence.

Equations
@[simp]
theorem Bialgebra.TensorProduct.lid_tmul {R : Type u_1} {B : Type u_4} [CommSemiring R] [Semiring B] [Bialgebra R B] (r : R) (a : B) :
(TensorProduct.lid R B) (r ⊗ₜ[R] a) = r a
@[simp]
theorem Bialgebra.TensorProduct.lid_symm_apply {R : Type u_1} {B : Type u_4} [CommSemiring R] [Semiring B] [Bialgebra R B] (a : B) :
noncomputable def Bialgebra.TensorProduct.rid (R : Type u_1) (S : Type u_2) (A : Type u_3) [CommSemiring R] [CommSemiring S] [Semiring A] [Bialgebra S A] [Algebra R A] [Algebra R S] [IsScalarTower R S A] :

The base ring is a right identity for the tensor product of bialgebras, up to bialgebra equivalence.

Equations
@[simp]
@[simp]
@[simp]
theorem Bialgebra.TensorProduct.rid_tmul {R : Type u_1} {S : Type u_2} {A : Type u_3} [CommSemiring R] [CommSemiring S] [Semiring A] [Bialgebra S A] [Algebra R A] [Algebra R S] [IsScalarTower R S A] (r : R) (a : A) :
(TensorProduct.rid R S A) (a ⊗ₜ[R] r) = r a
@[simp]
theorem Bialgebra.TensorProduct.rid_symm_apply {R : Type u_1} {S : Type u_2} {A : Type u_3} [CommSemiring R] [CommSemiring S] [Semiring A] [Bialgebra S A] [Algebra R A] [Algebra R S] [IsScalarTower R S A] (a : A) :
@[reducible, inline]
noncomputable abbrev BialgHom.lTensor {R : Type u_1} (A : Type u_2) {B : Type u_3} {C : Type u_4} [CommRing R] [Ring A] [Ring B] [Ring C] [Bialgebra R A] [Bialgebra R B] [Bialgebra R C] (f : B →ₐc[R] C) :

lTensor A f : A ⊗ B →ₐc A ⊗ C is the natural bialgebra morphism induced by f : B →ₐc C.

Equations
@[reducible, inline]
noncomputable abbrev BialgHom.rTensor {R : Type u_1} (A : Type u_2) {B : Type u_3} {C : Type u_4} [CommRing R] [Ring A] [Ring B] [Ring C] [Bialgebra R A] [Bialgebra R B] [Bialgebra R C] (f : B →ₐc[R] C) :

rTensor A f : B ⊗ A →ₐc C ⊗ A is the natural bialgebra morphism induced by f : B →ₐc C.

Equations