Documentation

Mathlib.Probability.Kernel.Condexp

Kernel associated with a conditional expectation #

We define condExpKernel μ m, a kernel from Ω to Ω such that for all integrable functions f, μ[f | m] =ᵐ[μ] fun ω => ∫ y, f y ∂(condExpKernel μ m ω).

This kernel is defined if Ω is a standard Borel space. In general, μ⟦s | m⟧ maps a measurable set s to a function Ω → ℝ≥0∞, and for all s that map is unique up to a μ-null set. For all a, the map from sets to ℝ≥0∞ that we obtain that way verifies some of the properties of a measure, but the fact that the μ-null set depends on s can prevent us from finding versions of the conditional expectation that combine into a true measure. The standard Borel space assumption on Ω allows us to do so.

Main definitions #

Main statements #

theorem MeasureTheory.AEStronglyMeasurable.comp_snd_map_prod_id {Ω : Type u_1} {F : Type u_2} {m : MeasurableSpace Ω} {μ : Measure Ω} {f : ΩF} [TopologicalSpace F] (hm : m ) (hf : AEStronglyMeasurable f μ) :
AEStronglyMeasurable (fun (x : Ω × Ω) => f x.2) (Measure.map (fun (ω : Ω) => (id ω, id ω)) μ)
theorem MeasureTheory.Integrable.comp_snd_map_prod_id {Ω : Type u_1} {F : Type u_2} {m : MeasurableSpace Ω} {μ : Measure Ω} {f : ΩF} [NormedAddCommGroup F] (hm : m ) (hf : Integrable f μ) :
Integrable (fun (x : Ω × Ω) => f x.2) (Measure.map (fun (ω : Ω) => (id ω, id ω)) μ)
@[irreducible]

Kernel associated with the conditional expectation with respect to a σ-algebra. It satisfies μ[f | m] =ᵐ[μ] fun ω => ∫ y, f y ∂(condExpKernel μ m ω). It is defined as the conditional distribution of the identity given the identity, where the second identity is understood as a map from Ω with the σ-algebra to Ω with σ-algebra m ⊓ mΩ. We use m ⊓ mΩ instead of m to ensure that it is a sub-σ-algebra of . We then use Kernel.comap to get a kernel from m to instead of from m ⊓ mΩ to .

Equations
@[deprecated ProbabilityTheory.condExpKernel (since := "2025-01-21")]

Alias of ProbabilityTheory.condExpKernel.


Kernel associated with the conditional expectation with respect to a σ-algebra. It satisfies μ[f | m] =ᵐ[μ] fun ω => ∫ y, f y ∂(condExpKernel μ m ω). It is defined as the conditional distribution of the identity given the identity, where the second identity is understood as a map from Ω with the σ-algebra to Ω with σ-algebra m ⊓ mΩ. We use m ⊓ mΩ instead of m to ensure that it is a sub-σ-algebra of . We then use Kernel.comap to get a kernel from m to instead of from m ⊓ mΩ to .

Equations
@[deprecated ProbabilityTheory.condExpKernel_eq (since := "2025-01-21")]

Alias of ProbabilityTheory.condExpKernel_eq.

@[deprecated ProbabilityTheory.condExpKernel_apply_eq_condDistrib (since := "2025-01-21")]

Alias of ProbabilityTheory.condExpKernel_apply_eq_condDistrib.

@[deprecated ProbabilityTheory.measurable_condExpKernel (since := "2025-01-21")]

Alias of ProbabilityTheory.measurable_condExpKernel.

@[deprecated ProbabilityTheory.stronglyMeasurable_condExpKernel (since := "2025-01-21")]

Alias of ProbabilityTheory.stronglyMeasurable_condExpKernel.

@[deprecated MeasureTheory.AEStronglyMeasurable.integral_condExpKernel (since := "2025-01-21")]
theorem MeasureTheory.AEStronglyMeasurable.integral_condexpKernel {Ω : Type u_1} {F : Type u_2} {m : MeasurableSpace Ω} [ : MeasurableSpace Ω] [StandardBorelSpace Ω] {μ : Measure Ω} [IsFiniteMeasure μ] [NormedAddCommGroup F] {f : ΩF} [NormedSpace F] (hf : AEStronglyMeasurable f μ) :
AEStronglyMeasurable (fun (ω : Ω) => (y : Ω), f y (ProbabilityTheory.condExpKernel μ m) ω) μ

Alias of MeasureTheory.AEStronglyMeasurable.integral_condExpKernel.

@[deprecated ProbabilityTheory.aestronglyMeasurable_integral_condExpKernel (since := "2025-01-24")]

Alias of ProbabilityTheory.aestronglyMeasurable_integral_condExpKernel.

@[deprecated ProbabilityTheory.aestronglyMeasurable_integral_condExpKernel (since := "2025-01-21")]

Alias of ProbabilityTheory.aestronglyMeasurable_integral_condExpKernel.

theorem MeasureTheory.Integrable.condExpKernel_ae {Ω : Type u_1} {F : Type u_2} {m : MeasurableSpace Ω} [ : MeasurableSpace Ω] [StandardBorelSpace Ω] {μ : Measure Ω} [IsFiniteMeasure μ] [NormedAddCommGroup F] {f : ΩF} (hf_int : Integrable f μ) :
@[deprecated MeasureTheory.Integrable.condExpKernel_ae (since := "2025-01-21")]
theorem MeasureTheory.Integrable.condexpKernel_ae {Ω : Type u_1} {F : Type u_2} {m : MeasurableSpace Ω} [ : MeasurableSpace Ω] [StandardBorelSpace Ω] {μ : Measure Ω} [IsFiniteMeasure μ] [NormedAddCommGroup F] {f : ΩF} (hf_int : Integrable f μ) :

Alias of MeasureTheory.Integrable.condExpKernel_ae.

theorem MeasureTheory.Integrable.integral_norm_condExpKernel {Ω : Type u_1} {F : Type u_2} {m : MeasurableSpace Ω} [ : MeasurableSpace Ω] [StandardBorelSpace Ω] {μ : Measure Ω} [IsFiniteMeasure μ] [NormedAddCommGroup F] {f : ΩF} (hf_int : Integrable f μ) :
Integrable (fun (ω : Ω) => (y : Ω), f y (ProbabilityTheory.condExpKernel μ m) ω) μ
@[deprecated MeasureTheory.Integrable.integral_norm_condExpKernel (since := "2025-01-21")]
theorem MeasureTheory.Integrable.integral_norm_condexpKernel {Ω : Type u_1} {F : Type u_2} {m : MeasurableSpace Ω} [ : MeasurableSpace Ω] [StandardBorelSpace Ω] {μ : Measure Ω} [IsFiniteMeasure μ] [NormedAddCommGroup F] {f : ΩF} (hf_int : Integrable f μ) :
Integrable (fun (ω : Ω) => (y : Ω), f y (ProbabilityTheory.condExpKernel μ m) ω) μ

Alias of MeasureTheory.Integrable.integral_norm_condExpKernel.

theorem MeasureTheory.Integrable.norm_integral_condExpKernel {Ω : Type u_1} {F : Type u_2} {m : MeasurableSpace Ω} [ : MeasurableSpace Ω] [StandardBorelSpace Ω] {μ : Measure Ω} [IsFiniteMeasure μ] [NormedAddCommGroup F] {f : ΩF} [NormedSpace F] (hf_int : Integrable f μ) :
Integrable (fun (ω : Ω) => (y : Ω), f y (ProbabilityTheory.condExpKernel μ m) ω) μ
@[deprecated MeasureTheory.Integrable.norm_integral_condExpKernel (since := "2025-01-21")]
theorem MeasureTheory.Integrable.norm_integral_condexpKernel {Ω : Type u_1} {F : Type u_2} {m : MeasurableSpace Ω} [ : MeasurableSpace Ω] [StandardBorelSpace Ω] {μ : Measure Ω} [IsFiniteMeasure μ] [NormedAddCommGroup F] {f : ΩF} [NormedSpace F] (hf_int : Integrable f μ) :
Integrable (fun (ω : Ω) => (y : Ω), f y (ProbabilityTheory.condExpKernel μ m) ω) μ

Alias of MeasureTheory.Integrable.norm_integral_condExpKernel.

theorem MeasureTheory.Integrable.integral_condExpKernel {Ω : Type u_1} {F : Type u_2} {m : MeasurableSpace Ω} [ : MeasurableSpace Ω] [StandardBorelSpace Ω] {μ : Measure Ω} [IsFiniteMeasure μ] [NormedAddCommGroup F] {f : ΩF} [NormedSpace F] (hf_int : Integrable f μ) :
Integrable (fun (ω : Ω) => (y : Ω), f y (ProbabilityTheory.condExpKernel μ m) ω) μ
@[deprecated MeasureTheory.Integrable.integral_condExpKernel (since := "2025-01-21")]
theorem MeasureTheory.Integrable.integral_condexpKernel {Ω : Type u_1} {F : Type u_2} {m : MeasurableSpace Ω} [ : MeasurableSpace Ω] [StandardBorelSpace Ω] {μ : Measure Ω} [IsFiniteMeasure μ] [NormedAddCommGroup F] {f : ΩF} [NormedSpace F] (hf_int : Integrable f μ) :
Integrable (fun (ω : Ω) => (y : Ω), f y (ProbabilityTheory.condExpKernel μ m) ω) μ

Alias of MeasureTheory.Integrable.integral_condExpKernel.

@[deprecated ProbabilityTheory.integrable_toReal_condExpKernel (since := "2025-01-21")]

Alias of ProbabilityTheory.integrable_toReal_condExpKernel.

theorem ProbabilityTheory.condExpKernel_ae_eq_condExp' {Ω : Type u_1} {m : MeasurableSpace Ω} [ : MeasurableSpace Ω] [StandardBorelSpace Ω] {μ : MeasureTheory.Measure Ω} [MeasureTheory.IsFiniteMeasure μ] {s : Set Ω} (hs : MeasurableSet s) :
(fun (ω : Ω) => ((condExpKernel μ m) ω).real s) =ᵐ[μ] μ[s.indicator fun (ω : Ω) => 1|m]
@[deprecated ProbabilityTheory.condExpKernel_ae_eq_condExp' (since := "2025-01-21")]
theorem ProbabilityTheory.condexpKernel_ae_eq_condexp' {Ω : Type u_1} {m : MeasurableSpace Ω} [ : MeasurableSpace Ω] [StandardBorelSpace Ω] {μ : MeasureTheory.Measure Ω} [MeasureTheory.IsFiniteMeasure μ] {s : Set Ω} (hs : MeasurableSet s) :
(fun (ω : Ω) => ((condExpKernel μ m) ω).real s) =ᵐ[μ] μ[s.indicator fun (ω : Ω) => 1|m]

Alias of ProbabilityTheory.condExpKernel_ae_eq_condExp'.

theorem ProbabilityTheory.condExpKernel_ae_eq_condExp {Ω : Type u_1} {m : MeasurableSpace Ω} [ : MeasurableSpace Ω] [StandardBorelSpace Ω] {μ : MeasureTheory.Measure Ω} [MeasureTheory.IsFiniteMeasure μ] (hm : m ) {s : Set Ω} (hs : MeasurableSet s) :
(fun (ω : Ω) => ((condExpKernel μ m) ω).real s) =ᵐ[μ] μ[s.indicator fun (ω : Ω) => 1|m]
@[deprecated ProbabilityTheory.condExpKernel_ae_eq_condExp (since := "2025-01-21")]
theorem ProbabilityTheory.condexpKernel_ae_eq_condexp {Ω : Type u_1} {m : MeasurableSpace Ω} [ : MeasurableSpace Ω] [StandardBorelSpace Ω] {μ : MeasureTheory.Measure Ω} [MeasureTheory.IsFiniteMeasure μ] (hm : m ) {s : Set Ω} (hs : MeasurableSet s) :
(fun (ω : Ω) => ((condExpKernel μ m) ω).real s) =ᵐ[μ] μ[s.indicator fun (ω : Ω) => 1|m]

Alias of ProbabilityTheory.condExpKernel_ae_eq_condExp.

theorem ProbabilityTheory.condExpKernel_ae_eq_trim_condExp {Ω : Type u_1} {m : MeasurableSpace Ω} [ : MeasurableSpace Ω] [StandardBorelSpace Ω] {μ : MeasureTheory.Measure Ω} [MeasureTheory.IsFiniteMeasure μ] (hm : m ) {s : Set Ω} (hs : MeasurableSet s) :
(fun (ω : Ω) => ((condExpKernel μ m) ω).real s) =ᵐ[μ.trim hm] μ[s.indicator fun (ω : Ω) => 1|m]
@[deprecated ProbabilityTheory.condExpKernel_ae_eq_trim_condExp (since := "2025-01-21")]
theorem ProbabilityTheory.condexpKernel_ae_eq_trim_condexp {Ω : Type u_1} {m : MeasurableSpace Ω} [ : MeasurableSpace Ω] [StandardBorelSpace Ω] {μ : MeasureTheory.Measure Ω} [MeasureTheory.IsFiniteMeasure μ] (hm : m ) {s : Set Ω} (hs : MeasurableSet s) :
(fun (ω : Ω) => ((condExpKernel μ m) ω).real s) =ᵐ[μ.trim hm] μ[s.indicator fun (ω : Ω) => 1|m]

Alias of ProbabilityTheory.condExpKernel_ae_eq_trim_condExp.

theorem ProbabilityTheory.condExp_ae_eq_integral_condExpKernel' {Ω : Type u_1} {F : Type u_2} {m : MeasurableSpace Ω} [ : MeasurableSpace Ω] [StandardBorelSpace Ω] {μ : MeasureTheory.Measure Ω} [MeasureTheory.IsFiniteMeasure μ] [NormedAddCommGroup F] {f : ΩF} [NormedSpace F] [CompleteSpace F] (hf_int : MeasureTheory.Integrable f μ) :
μ[f|m] =ᵐ[μ] fun (ω : Ω) => (y : Ω), f y (condExpKernel μ m) ω
@[deprecated ProbabilityTheory.condExp_ae_eq_integral_condExpKernel' (since := "2025-01-21")]
theorem ProbabilityTheory.condexp_ae_eq_integral_condexpKernel' {Ω : Type u_1} {F : Type u_2} {m : MeasurableSpace Ω} [ : MeasurableSpace Ω] [StandardBorelSpace Ω] {μ : MeasureTheory.Measure Ω} [MeasureTheory.IsFiniteMeasure μ] [NormedAddCommGroup F] {f : ΩF} [NormedSpace F] [CompleteSpace F] (hf_int : MeasureTheory.Integrable f μ) :
μ[f|m] =ᵐ[μ] fun (ω : Ω) => (y : Ω), f y (condExpKernel μ m) ω

Alias of ProbabilityTheory.condExp_ae_eq_integral_condExpKernel'.

theorem ProbabilityTheory.condExp_ae_eq_integral_condExpKernel {Ω : Type u_1} {F : Type u_2} {m : MeasurableSpace Ω} [ : MeasurableSpace Ω] [StandardBorelSpace Ω] {μ : MeasureTheory.Measure Ω} [MeasureTheory.IsFiniteMeasure μ] [NormedAddCommGroup F] {f : ΩF} [NormedSpace F] [CompleteSpace F] (hm : m ) (hf_int : MeasureTheory.Integrable f μ) :
μ[f|m] =ᵐ[μ] fun (ω : Ω) => (y : Ω), f y (condExpKernel μ m) ω

The conditional expectation of f with respect to a σ-algebra m is almost everywhere equal to the integral ∫ y, f y ∂(condExpKernel μ m ω).

@[deprecated ProbabilityTheory.condExp_ae_eq_integral_condExpKernel (since := "2025-01-21")]
theorem ProbabilityTheory.condexp_ae_eq_integral_condexpKernel {Ω : Type u_1} {F : Type u_2} {m : MeasurableSpace Ω} [ : MeasurableSpace Ω] [StandardBorelSpace Ω] {μ : MeasureTheory.Measure Ω} [MeasureTheory.IsFiniteMeasure μ] [NormedAddCommGroup F] {f : ΩF} [NormedSpace F] [CompleteSpace F] (hm : m ) (hf_int : MeasureTheory.Integrable f μ) :
μ[f|m] =ᵐ[μ] fun (ω : Ω) => (y : Ω), f y (condExpKernel μ m) ω

Alias of ProbabilityTheory.condExp_ae_eq_integral_condExpKernel.


The conditional expectation of f with respect to a σ-algebra m is almost everywhere equal to the integral ∫ y, f y ∂(condExpKernel μ m ω).

theorem ProbabilityTheory.condExp_ae_eq_trim_integral_condExpKernel {Ω : Type u_1} {F : Type u_2} {m : MeasurableSpace Ω} [ : MeasurableSpace Ω] [StandardBorelSpace Ω] {μ : MeasureTheory.Measure Ω} [MeasureTheory.IsFiniteMeasure μ] [NormedAddCommGroup F] {f : ΩF} [NormedSpace F] [CompleteSpace F] (hm : m ) (hf_int : MeasureTheory.Integrable f μ) :
μ[f|m] =ᵐ[μ.trim hm] fun (ω : Ω) => (y : Ω), f y (condExpKernel μ m) ω

The conditional expectation of f with respect to a σ-algebra m is (μ.trim hm)-almost everywhere equal to the integral ∫ y, f y ∂(condExpKernel μ m ω).

Relation between conditional expectation, conditional kernel and the conditional measure. #

@[deprecated ProbabilityTheory.condExp_generateFrom_singleton (since := "2025-01-21")]

Alias of ProbabilityTheory.condExp_generateFrom_singleton.

@[deprecated ProbabilityTheory.condExp_set_generateFrom_singleton (since := "2025-01-21")]

Alias of ProbabilityTheory.condExp_set_generateFrom_singleton.

@[deprecated ProbabilityTheory.condExpKernel_singleton_ae_eq_cond (since := "2025-01-21")]

Alias of ProbabilityTheory.condExpKernel_singleton_ae_eq_cond.