Documentation

Mathlib.Probability.Distributions.Pareto

Pareto distributions over ℝ #

Define the Pareto measure over the reals.

Main definitions #

noncomputable def ProbabilityTheory.paretoPDFReal (t r x : ) :

The pdf of the Pareto distribution depending on its scale t and rate r.

Equations
noncomputable def ProbabilityTheory.paretoPDF (t r x : ) :

The pdf of the Pareto distribution, as a function valued in ℝ≥0∞.

Equations
theorem ProbabilityTheory.paretoPDF_eq (t r x : ) :
paretoPDF t r x = ENNReal.ofReal (if t x then r * t ^ r * x ^ (-(r + 1)) else 0)
theorem ProbabilityTheory.paretoPDF_of_lt {t r x : } (hx : x < t) :
paretoPDF t r x = 0
theorem ProbabilityTheory.paretoPDF_of_le {t r x : } (hx : t x) :
paretoPDF t r x = ENNReal.ofReal (r * t ^ r * x ^ (-(r + 1)))
theorem ProbabilityTheory.lintegral_paretoPDF_of_le {t r x : } (hx : x t) :
∫⁻ (y : ) in Set.Iio x, paretoPDF t r y = 0

The Lebesgue integral of the Pareto pdf over reals ≤ t equals 0.

The Pareto pdf is measurable.

theorem ProbabilityTheory.paretoPDFReal_pos {t r x : } (ht : 0 < t) (hr : 0 < r) (hx : t x) :

The Pareto pdf is positive for all reals >= t.

theorem ProbabilityTheory.paretoPDFReal_nonneg {t r : } (ht : 0 t) (hr : 0 r) (x : ) :

The Pareto pdf is nonnegative.

@[simp]
theorem ProbabilityTheory.lintegral_paretoPDF_eq_one {t r : } (ht : 0 < t) (hr : 0 < r) :
∫⁻ (x : ), paretoPDF t r x = 1

The pdf of the Pareto distribution integrates to 1.

theorem ProbabilityTheory.paretoCDFReal_eq_integral {t r : } (ht : 0 < t) (hr : 0 < r) (x : ) :
(cdf (paretoMeasure t r)) x = (x : ) in Set.Iic x, paretoPDFReal t r x

CDF of the Pareto distribution equals the integral of the PDF.

theorem ProbabilityTheory.paretoCDFReal_eq_lintegral {t r : } (ht : 0 < t) (hr : 0 < r) (x : ) :
(cdf (paretoMeasure t r)) x = (∫⁻ (x : ) in Set.Iic x, paretoPDF t r x).toReal