Documentation

Mathlib.Probability.Distributions.Exponential

Exponential distributions over ℝ #

Define the Exponential measure over the reals.

Main definitions #

Main results #

noncomputable def ProbabilityTheory.exponentialPDFReal (r x : ) :

The pdf of the exponential distribution depending on its rate

Equations
noncomputable def ProbabilityTheory.exponentialPDF (r x : ) :

The pdf of the exponential distribution, as a function valued in ℝ≥0∞

Equations

The Lebesgue integral of the exponential pdf over nonpositive reals equals 0

The exponential pdf is measurable.

theorem ProbabilityTheory.exponentialPDFReal_pos {x r : } (hr : 0 < r) (hx : 0 < x) :

The exponential pdf is positive for all positive reals

The exponential pdf is nonnegative

@[simp]

The pdf of the exponential distribution integrates to 1

Measure defined by the exponential distribution

Equations
theorem ProbabilityTheory.hasDerivAt_neg_exp_mul_exp {r x : } :
HasDerivAt (fun (a : ) => -Real.exp (-(r * a))) (r * Real.exp (-(r * x))) x

A negative exponential function is integrable on intervals in R≥0

theorem ProbabilityTheory.exponentialCDFReal_eq {r : } (hr : 0 < r) (x : ) :
(exponentialCDFReal r) x = if 0 x then 1 - Real.exp (-(r * x)) else 0

The CDF of the exponential distribution equals 1 - exp (-(r * x))