Documentation

Mathlib.Order.Shrink

Order instances on Shrink #

If α : Type v is u-small, we transport various order related instances on α to Shrink.{u} α.

Equations
noncomputable def orderIsoShrink (α : Type v) [Small.{u, v} α] [Preorder α] :

The order isomorphism α ≃o Shrink.{u} α.

Equations
@[simp]
theorem orderIsoShrink_apply {α : Type v} [Small.{u, v} α] [Preorder α] (a : α) :
@[simp]
Equations
noncomputable instance instLinearOrderShrink {α : Type v} [Small.{u, v} α] [LinearOrder α] :
Equations
  • One or more equations did not get rendered due to their size.
noncomputable instance instBotShrink {α : Type v} [Small.{u, v} α] [Bot α] :
Equations
@[simp]
theorem equivShrink_bot {α : Type v} [Small.{u, v} α] [Bot α] :
@[simp]
theorem equivShrink_symm_bot {α : Type v} [Small.{u, v} α] [Bot α] :
noncomputable instance instTopShrink {α : Type v} [Small.{u, v} α] [Top α] :
Equations
@[simp]
theorem equivShrink_top {α : Type v} [Small.{u, v} α] [Top α] :
@[simp]
theorem equivShrink_symm_top {α : Type v} [Small.{u, v} α] [Top α] :
noncomputable instance instOrderBotShrink {α : Type v} [Small.{u, v} α] [Preorder α] [OrderBot α] :
Equations
noncomputable instance instOrderTopShrink {α : Type v} [Small.{u, v} α] [Preorder α] [OrderTop α] :
Equations