Documentation

Mathlib.NumberTheory.Padics.PadicIntegers

p-adic integers #

This file defines the p-adic integers ℤ_[p] as the subtype of ℚ_[p] with norm ≤ 1. We show that ℤ_[p]

The relation between ℤ_[p] and ZMod p is established in another file.

Important definitions #

Notation #

We introduce the notation ℤ_[p] for the p-adic integers.

Implementation notes #

Much, but not all, of this file assumes that p is prime. This assumption is inferred automatically by taking [Fact p.Prime] as a type class argument.

Coercions into ℤ_[p] are set up to work with the norm_cast tactic.

References #

Tags #

p-adic, p adic, padic, p-adic integer

def PadicInt (p : ) [hp : Fact (Nat.Prime p)] :

The p-adic integers ℤ_[p] are the p-adic numbers with norm ≤ 1.

Equations

The ring of p-adic integers.

Equations
  • One or more equations did not get rendered due to their size.

Ring structure and coercion to ℚ_[p] #

theorem PadicInt.ext {p : } [hp : Fact (Nat.Prime p)] {x y : ℤ_[p]} :
x = yx = y

The p-adic integers as a subring of ℚ_[p].

Equations
@[simp]
theorem PadicInt.mem_subring_iff (p : ) [hp : Fact (Nat.Prime p)] {x : ℚ_[p]} :
Equations
@[simp]
theorem PadicInt.mk_zero {p : } [hp : Fact (Nat.Prime p)] {h : 0 1} :
0, h = 0
@[simp]
theorem PadicInt.coe_add {p : } [hp : Fact (Nat.Prime p)] (z1 z2 : ℤ_[p]) :
↑(z1 + z2) = z1 + z2
@[simp]
theorem PadicInt.coe_mul {p : } [hp : Fact (Nat.Prime p)] (z1 z2 : ℤ_[p]) :
↑(z1 * z2) = z1 * z2
@[simp]
theorem PadicInt.coe_neg {p : } [hp : Fact (Nat.Prime p)] (z1 : ℤ_[p]) :
↑(-z1) = -z1
@[simp]
theorem PadicInt.coe_sub {p : } [hp : Fact (Nat.Prime p)] (z1 z2 : ℤ_[p]) :
↑(z1 - z2) = z1 - z2
@[simp]
theorem PadicInt.coe_one {p : } [hp : Fact (Nat.Prime p)] :
1 = 1
@[simp]
theorem PadicInt.coe_zero {p : } [hp : Fact (Nat.Prime p)] :
0 = 0
@[simp]
theorem PadicInt.coe_eq_zero {p : } [hp : Fact (Nat.Prime p)] {x : ℤ_[p]} :
x = 0 x = 0
theorem PadicInt.coe_ne_zero {p : } [hp : Fact (Nat.Prime p)] {x : ℤ_[p]} :
x 0 x 0
@[simp]
theorem PadicInt.coe_natCast {p : } [hp : Fact (Nat.Prime p)] (n : ) :
n = n
@[simp]
theorem PadicInt.coe_intCast {p : } [hp : Fact (Nat.Prime p)] (z : ) :
z = z

The coercion from ℤ_[p] to ℚ_[p] as a ring homomorphism.

Equations
@[simp]
theorem PadicInt.coe_pow {p : } [hp : Fact (Nat.Prime p)] (x : ℤ_[p]) (n : ) :
↑(x ^ n) = x ^ n
theorem PadicInt.mk_coe {p : } [hp : Fact (Nat.Prime p)] (k : ℤ_[p]) :
k, = k
def PadicInt.inv {p : } [hp : Fact (Nat.Prime p)] :

The inverse of a p-adic integer with norm equal to 1 is also a p-adic integer. Otherwise, the inverse is defined to be 0.

Equations
theorem PadicInt.intCast_eq {p : } [hp : Fact (Nat.Prime p)] (z1 z2 : ) :
z1 = z2 z1 = z2
def PadicInt.ofIntSeq {p : } [hp : Fact (Nat.Prime p)] (seq : ) (h : IsCauSeq (padicNorm p) fun (n : ) => (seq n)) :

A sequence of integers that is Cauchy with respect to the p-adic norm converges to a p-adic integer.

Equations

Instances #

We now show that ℤ_[p] is a

instance PadicInt.instNorm (p : ) [hp : Fact (Nat.Prime p)] :
Equations
theorem PadicInt.norm_def {p : } [hp : Fact (Nat.Prime p)] {z : ℤ_[p]} :
Equations

Norm #

theorem PadicInt.norm_le_one {p : } [hp : Fact (Nat.Prime p)] (z : ℤ_[p]) :
theorem PadicInt.norm_eq_of_norm_add_lt_right {p : } [hp : Fact (Nat.Prime p)] {z1 z2 : ℤ_[p]} (h : z1 + z2 < z2) :
theorem PadicInt.norm_eq_of_norm_add_lt_left {p : } [hp : Fact (Nat.Prime p)] {z1 z2 : ℤ_[p]} (h : z1 + z2 < z1) :
@[simp]
@[simp]
theorem PadicInt.norm_eq_padic_norm {p : } [hp : Fact (Nat.Prime p)] {q : ℚ_[p]} (hq : q 1) :
@[simp]
theorem PadicInt.norm_p {p : } [hp : Fact (Nat.Prime p)] :
p = (↑p)⁻¹
theorem PadicInt.norm_p_pow {p : } [hp : Fact (Nat.Prime p)] (n : ) :
p ^ n = p ^ (-n)
theorem PadicInt.exists_pow_neg_lt (p : ) [hp : Fact (Nat.Prime p)] {ε : } ( : 0 < ε) :
∃ (k : ), p ^ (-k) < ε
theorem PadicInt.exists_pow_neg_lt_rat (p : ) [hp : Fact (Nat.Prime p)] {ε : } ( : 0 < ε) :
∃ (k : ), p ^ (-k) < ε
theorem PadicInt.norm_int_lt_one_iff_dvd {p : } [hp : Fact (Nat.Prime p)] (k : ) :
k < 1 p k
theorem PadicInt.norm_int_le_pow_iff_dvd {p : } [hp : Fact (Nat.Prime p)] {k : } {n : } :
k p ^ (-n) p ^ n k

Valuation on ℤ_[p] #

theorem PadicInt.valuation_coe_nonneg {p : } [hp : Fact (Nat.Prime p)] {x : ℤ_[p]} :
0 (↑x).valuation
def PadicInt.valuation {p : } [hp : Fact (Nat.Prime p)] (x : ℤ_[p]) :

PadicInt.valuation lifts the p-adic valuation on to ℤ_[p].

Equations
@[simp]
theorem PadicInt.valuation_coe {p : } [hp : Fact (Nat.Prime p)] (x : ℤ_[p]) :
(↑x).valuation = x.valuation
@[simp]
theorem PadicInt.valuation_zero {p : } [hp : Fact (Nat.Prime p)] :
@[simp]
theorem PadicInt.valuation_one {p : } [hp : Fact (Nat.Prime p)] :
@[simp]
theorem PadicInt.valuation_p {p : } [hp : Fact (Nat.Prime p)] :
(↑p).valuation = 1
theorem PadicInt.le_valuation_add {p : } [hp : Fact (Nat.Prime p)] {x y : ℤ_[p]} (hxy : x + y 0) :
@[simp]
theorem PadicInt.valuation_mul {p : } [hp : Fact (Nat.Prime p)] {x y : ℤ_[p]} (hx : x 0) (hy : y 0) :
@[simp]
theorem PadicInt.valuation_pow {p : } [hp : Fact (Nat.Prime p)] (x : ℤ_[p]) (n : ) :
(x ^ n).valuation = n * x.valuation
theorem PadicInt.norm_eq_zpow_neg_valuation {p : } [hp : Fact (Nat.Prime p)] {x : ℤ_[p]} (hx : x 0) :
x = p ^ (-x.valuation)
@[deprecated PadicInt.norm_eq_zpow_neg_valuation (since := "2024-12-10")]
theorem PadicInt.norm_eq_pow_val {p : } [hp : Fact (Nat.Prime p)] {x : ℤ_[p]} (hx : x 0) :
x = p ^ (-x.valuation)

Alias of PadicInt.norm_eq_zpow_neg_valuation.

@[simp]
theorem PadicInt.valuation_p_pow_mul {p : } [hp : Fact (Nat.Prime p)] (n : ) (c : ℤ_[p]) (hc : c 0) :
(p ^ n * c).valuation = n + c.valuation

Units of ℤ_[p] #

theorem PadicInt.mul_inv {p : } [hp : Fact (Nat.Prime p)] {z : ℤ_[p]} :
z = 1z * z.inv = 1
theorem PadicInt.inv_mul {p : } [hp : Fact (Nat.Prime p)] {z : ℤ_[p]} (hz : z = 1) :
z.inv * z = 1
theorem PadicInt.isUnit_iff {p : } [hp : Fact (Nat.Prime p)] {z : ℤ_[p]} :
theorem PadicInt.norm_lt_one_add {p : } [hp : Fact (Nat.Prime p)] {z1 z2 : ℤ_[p]} (hz1 : z1 < 1) (hz2 : z2 < 1) :
z1 + z2 < 1
theorem PadicInt.norm_lt_one_mul {p : } [hp : Fact (Nat.Prime p)] {z1 z2 : ℤ_[p]} (hz2 : z2 < 1) :
z1 * z2 < 1
theorem PadicInt.not_isUnit_iff {p : } [hp : Fact (Nat.Prime p)] {z : ℤ_[p]} :
def PadicInt.mkUnits {p : } [hp : Fact (Nat.Prime p)] {u : ℚ_[p]} (h : u = 1) :

A p-adic number u with ‖u‖ = 1 is a unit of ℤ_[p].

Equations
@[simp]
theorem PadicInt.mkUnits_eq {p : } [hp : Fact (Nat.Prime p)] {u : ℚ_[p]} (h : u = 1) :
(mkUnits h) = u
@[simp]
theorem PadicInt.norm_units {p : } [hp : Fact (Nat.Prime p)] (u : ℤ_[p]ˣ) :
u = 1
def PadicInt.unitCoeff {p : } [hp : Fact (Nat.Prime p)] {x : ℤ_[p]} (hx : x 0) :

unitCoeff hx is the unit u in the unique representation x = u * p ^ n. See unitCoeff_spec.

Equations
@[simp]
theorem PadicInt.unitCoeff_coe {p : } [hp : Fact (Nat.Prime p)] {x : ℤ_[p]} (hx : x 0) :
(unitCoeff hx) = x * p ^ (-x.valuation)
theorem PadicInt.unitCoeff_spec {p : } [hp : Fact (Nat.Prime p)] {x : ℤ_[p]} (hx : x 0) :
x = (unitCoeff hx) * p ^ x.valuation

Various characterizations of open unit balls #

theorem PadicInt.norm_le_pow_iff_le_valuation {p : } [hp : Fact (Nat.Prime p)] (x : ℤ_[p]) (hx : x 0) (n : ) :
x p ^ (-n) n x.valuation
theorem PadicInt.mem_span_pow_iff_le_valuation {p : } [hp : Fact (Nat.Prime p)] (x : ℤ_[p]) (hx : x 0) (n : ) :
theorem PadicInt.norm_le_pow_iff_mem_span_pow {p : } [hp : Fact (Nat.Prime p)] (x : ℤ_[p]) (n : ) :
x p ^ (-n) x Ideal.span {p ^ n}
theorem PadicInt.norm_le_pow_iff_norm_lt_pow_add_one {p : } [hp : Fact (Nat.Prime p)] (x : ℤ_[p]) (n : ) :
x p ^ n x < p ^ (n + 1)
theorem PadicInt.norm_lt_pow_iff_norm_le_pow_sub_one {p : } [hp : Fact (Nat.Prime p)] (x : ℤ_[p]) (n : ) :
x < p ^ n x p ^ (n - 1)
theorem PadicInt.norm_lt_one_iff_dvd {p : } [hp : Fact (Nat.Prime p)] (x : ℤ_[p]) :
x < 1 p x
@[simp]
theorem PadicInt.pow_p_dvd_int_iff {p : } [hp : Fact (Nat.Prime p)] (n : ) (a : ) :
p ^ n a p ^ n a

Discrete valuation ring #

theorem PadicInt.prime_p {p : } [hp : Fact (Nat.Prime p)] :
Prime p
theorem PadicInt.ideal_eq_span_pow_p {p : } [hp : Fact (Nat.Prime p)] {s : Ideal ℤ_[p]} (hs : s ) :
∃ (n : ), s = Ideal.span {p ^ n}
@[simp]
theorem PadicInt.algebraMap_apply {p : } [hp : Fact (Nat.Prime p)] (x : ℤ_[p]) :