Documentation

Mathlib.ModelTheory.Encoding

Encodings and Cardinality of First-Order Syntax #

Main Definitions #

Main Results #

TODO #

def FirstOrder.Language.Term.listEncode {L : Language} {α : Type u'} :
L.Term αList (α (i : ) × L.Functions i)

Encodes a term as a list of variables and function symbols.

Equations
def FirstOrder.Language.Term.listDecode {L : Language} {α : Type u'} :
List (α (i : ) × L.Functions i)List (L.Term α)

Decodes a list of variables and function symbols as a list of terms.

Equations

An encoding of terms as lists.

Equations
  • One or more equations did not get rendered due to their size.
@[simp]
@[simp]
@[simp]
theorem FirstOrder.Language.Term.encoding_decode {L : Language} {α : Type u'} (l : List (α (i : ) × L.Functions i)) :
Term.encoding.decode l = (do let a(listDecode l).head? pure (some a)).join
Equations
  • One or more equations did not get rendered due to their size.
def FirstOrder.Language.BoundedFormula.sigmaAll {L : Language} {α : Type u'} :
(n : ) × L.BoundedFormula α n(n : ) × L.BoundedFormula α n

Applies the forall quantifier to an element of (Σ n, L.BoundedFormula α n), or returns default if not possible.

Equations
@[simp]
theorem FirstOrder.Language.BoundedFormula.sigmaAll_apply {L : Language} {α : Type u'} {n : } {φ : L.BoundedFormula α (n + 1)} :
sigmaAll n + 1, φ = n, φ.all
def FirstOrder.Language.BoundedFormula.sigmaImp {L : Language} {α : Type u'} :
(n : ) × L.BoundedFormula α n(n : ) × L.BoundedFormula α n(n : ) × L.BoundedFormula α n

Applies imp to two elements of (Σ n, L.BoundedFormula α n), or returns default if not possible.

Equations
@[simp]
theorem FirstOrder.Language.BoundedFormula.sigmaImp_apply {L : Language} {α : Type u'} {n : } {φ ψ : L.BoundedFormula α n} :
sigmaImp n, φ n, ψ = n, φ.imp ψ

Decodes a list of symbols as a list of formulas.

@[irreducible]
def FirstOrder.Language.BoundedFormula.listDecode {L : Language} {α : Type u'} :
List ((k : ) × L.Term (α Fin k) (n : ) × L.Relations n )List ((n : ) × L.BoundedFormula α n)

Decodes a list of symbols as a list of formulas.

Equations
@[simp]
theorem FirstOrder.Language.BoundedFormula.listDecode_encode_list {L : Language} {α : Type u'} (l : List ((n : ) × L.BoundedFormula α n)) :
listDecode (List.flatMap (fun (φ : (n : ) × L.BoundedFormula α n) => φ.snd.listEncode) l) = l

An encoding of bounded formulas as lists.

Equations
  • One or more equations did not get rendered due to their size.