Documentation

Mathlib.LinearAlgebra.TensorAlgebra.Basis

A basis for TensorAlgebra R M #

Main definitions #

Main results #

noncomputable def TensorAlgebra.equivFreeAlgebra {κ : Type uκ} {R : Type uR} {M : Type uM} [CommSemiring R] [AddCommMonoid M] [Module R M] (b : Basis κ R M) :

A basis provides an algebra isomorphism with the free algebra, replacing each basis vector with its index.

Equations
@[simp]
theorem TensorAlgebra.equivFreeAlgebra_ι_apply {κ : Type uκ} {R : Type uR} {M : Type uM} [CommSemiring R] [AddCommMonoid M] [Module R M] (b : Basis κ R M) (i : κ) :
(equivFreeAlgebra b) ((ι R) (b i)) = FreeAlgebra.ι R i
@[simp]
theorem TensorAlgebra.equivFreeAlgebra_symm_ι {κ : Type uκ} {R : Type uR} {M : Type uM} [CommSemiring R] [AddCommMonoid M] [Module R M] (b : Basis κ R M) (i : κ) :
noncomputable def Basis.tensorAlgebra {κ : Type uκ} {R : Type uR} {M : Type uM} [CommSemiring R] [AddCommMonoid M] [Module R M] (b : Basis κ R M) :

A basis on M can be lifted to a basis on TensorAlgebra R M

Equations
@[simp]
theorem Basis.tensorAlgebra_repr_apply {κ : Type uκ} {R : Type uR} {M : Type uM} [CommSemiring R] [AddCommMonoid M] [Module R M] (b : Basis κ R M) (a✝ : TensorAlgebra R M) :

TensorAlgebra R M is free when M is.

The TensorAlgebra of a free module over a commutative semiring with no zero-divisors has no zero-divisors.

instance TensorAlgebra.instIsDomain {R : Type uR} {M : Type uM} [CommRing R] [AddCommGroup M] [Module R M] [IsDomain R] [Module.Free R M] :

The TensorAlgebra of a free module over an integral domain is a domain.