Documentation

Mathlib.LinearAlgebra.Projectivization.Basic

Projective Spaces #

This file contains the definition of the projectivization of a vector space over a field, as well as the bijection between said projectivization and the collection of all one dimensional subspaces of the vector space.

Notation #

ℙ K V is localized notation for Projectivization K V, the projectivization of a K-vector space V.

Constructing terms of ℙ K V. #

We have three ways to construct terms of ℙ K V:

Other definitions #

def projectivizationSetoid (K : Type u_1) (V : Type u_2) [DivisionRing K] [AddCommGroup V] [Module K V] :
Setoid { v : V // v 0 }

The setoid whose quotient is the projectivization of V.

Equations
def Projectivization (K : Type u_1) (V : Type u_2) [DivisionRing K] [AddCommGroup V] [Module K V] :
Type u_2

The projectivization of the K-vector space V. The notation ℙ K V is preferred.

Equations

We define notations ℙ K V for the projectivization of the K-vector space V.

Equations
def Projectivization.mk (K : Type u_1) {V : Type u_2} [DivisionRing K] [AddCommGroup V] [Module K V] (v : V) (hv : v 0) :

Construct an element of the projectivization from a nonzero vector.

Equations
def Projectivization.mk' (K : Type u_1) {V : Type u_2} [DivisionRing K] [AddCommGroup V] [Module K V] (v : { v : V // v 0 }) :

A variant of Projectivization.mk in terms of a subtype. mk is preferred.

Equations
@[simp]
theorem Projectivization.mk'_eq_mk (K : Type u_1) {V : Type u_2} [DivisionRing K] [AddCommGroup V] [Module K V] (v : { v : V // v 0 }) :
mk' K v = mk K v
def Projectivization.lift {K : Type u_1} {V : Type u_2} [DivisionRing K] [AddCommGroup V] [Module K V] {α : Type u_3} (f : { v : V // v 0 }α) (hf : ∀ (a b : { v : V // v 0 }) (t : K), a = t bf a = f b) (x : Projectivization K V) :
α

A function on non-zero vectors which is independent of scale, descends to a function on the projectivization.

Equations
@[simp]
theorem Projectivization.lift_mk {K : Type u_1} {V : Type u_2} [DivisionRing K] [AddCommGroup V] [Module K V] {α : Type u_3} (f : { v : V // v 0 }α) (hf : ∀ (a b : { v : V // v 0 }) (t : K), a = t bf a = f b) (v : V) (hv : v 0) :
Projectivization.lift f hf (mk K v hv) = f v, hv
noncomputable def Projectivization.rep {K : Type u_1} {V : Type u_2} [DivisionRing K] [AddCommGroup V] [Module K V] (v : Projectivization K V) :
V

Choose a representative of v : Projectivization K V in V.

Equations
theorem Projectivization.rep_nonzero {K : Type u_1} {V : Type u_2} [DivisionRing K] [AddCommGroup V] [Module K V] (v : Projectivization K V) :
v.rep 0
@[simp]
theorem Projectivization.mk_rep {K : Type u_1} {V : Type u_2} [DivisionRing K] [AddCommGroup V] [Module K V] (v : Projectivization K V) :
mk K v.rep = v
def Projectivization.submodule {K : Type u_1} {V : Type u_2} [DivisionRing K] [AddCommGroup V] [Module K V] (v : Projectivization K V) :

Consider an element of the projectivization as a submodule of V.

Equations
theorem Projectivization.mk_eq_mk_iff (K : Type u_1) {V : Type u_2} [DivisionRing K] [AddCommGroup V] [Module K V] (v w : V) (hv : v 0) (hw : w 0) :
mk K v hv = mk K w hw ∃ (a : Kˣ), a w = v
theorem Projectivization.mk_eq_mk_iff' (K : Type u_1) {V : Type u_2} [DivisionRing K] [AddCommGroup V] [Module K V] (v w : V) (hv : v 0) (hw : w 0) :
mk K v hv = mk K w hw ∃ (a : K), a w = v

Two nonzero vectors go to the same point in projective space if and only if one is a scalar multiple of the other.

theorem Projectivization.exists_smul_eq_mk_rep (K : Type u_1) {V : Type u_2} [DivisionRing K] [AddCommGroup V] [Module K V] (v : V) (hv : v 0) :
∃ (a : Kˣ), a v = (mk K v hv).rep
theorem Projectivization.ind {K : Type u_1} {V : Type u_2} [DivisionRing K] [AddCommGroup V] [Module K V] {P : Projectivization K VProp} (h : ∀ (v : V) (h : v 0), P (mk K v h)) (p : Projectivization K V) :
P p

An induction principle for Projectivization. Use as induction v.

@[simp]
theorem Projectivization.submodule_mk {K : Type u_1} {V : Type u_2} [DivisionRing K] [AddCommGroup V] [Module K V] (v : V) (hv : v 0) :
noncomputable def Projectivization.equivSubmodule (K : Type u_1) (V : Type u_2) [DivisionRing K] [AddCommGroup V] [Module K V] :

The equivalence between the projectivization and the collection of subspaces of dimension 1.

Equations
noncomputable def Projectivization.mk'' {K : Type u_1} {V : Type u_2} [DivisionRing K] [AddCommGroup V] [Module K V] (H : Submodule K V) (h : Module.finrank K H = 1) :

Construct an element of the projectivization from a subspace of dimension 1.

Equations
@[simp]
theorem Projectivization.submodule_mk'' {K : Type u_1} {V : Type u_2} [DivisionRing K] [AddCommGroup V] [Module K V] (H : Submodule K V) (h : Module.finrank K H = 1) :
(mk'' H h).submodule = H
@[simp]
theorem Projectivization.mk''_submodule {K : Type u_1} {V : Type u_2} [DivisionRing K] [AddCommGroup V] [Module K V] (v : Projectivization K V) :
mk'' v.submodule = v
def Projectivization.map {K : Type u_1} {V : Type u_2} [DivisionRing K] [AddCommGroup V] [Module K V] {L : Type u_3} {W : Type u_4} [DivisionRing L] [AddCommGroup W] [Module L W] {σ : K →+* L} (f : V →ₛₗ[σ] W) (hf : Function.Injective f) :

An injective semilinear map of vector spaces induces a map on projective spaces.

Equations
theorem Projectivization.map_mk {K : Type u_1} {V : Type u_2} [DivisionRing K] [AddCommGroup V] [Module K V] {L : Type u_3} {W : Type u_4} [DivisionRing L] [AddCommGroup W] [Module L W] {σ : K →+* L} (f : V →ₛₗ[σ] W) (hf : Function.Injective f) (v : V) (hv : v 0) :
map f hf (mk K v hv) = mk L (f v)
theorem Projectivization.map_injective {K : Type u_1} {V : Type u_2} [DivisionRing K] [AddCommGroup V] [Module K V] {L : Type u_3} {W : Type u_4} [DivisionRing L] [AddCommGroup W] [Module L W] {σ : K →+* L} {τ : L →+* K} [RingHomInvPair σ τ] (f : V →ₛₗ[σ] W) (hf : Function.Injective f) :

Mapping with respect to a semilinear map over an isomorphism of fields yields an injective map on projective spaces.

@[simp]
theorem Projectivization.map_id {K : Type u_1} {V : Type u_2} [DivisionRing K] [AddCommGroup V] [Module K V] :
@[simp]
theorem Projectivization.map_comp {K : Type u_1} {V : Type u_2} [DivisionRing K] [AddCommGroup V] [Module K V] {L : Type u_3} {W : Type u_4} [DivisionRing L] [AddCommGroup W] [Module L W] {F : Type u_5} {U : Type u_6} [DivisionRing F] [AddCommGroup U] [Module F U] {σ : K →+* L} {τ : L →+* F} {γ : K →+* F} [RingHomCompTriple σ τ γ] (f : V →ₛₗ[σ] W) (hf : Function.Injective f) (g : W →ₛₗ[τ] U) (hg : Function.Injective g) (hgf : Function.Injective ⇑(g ∘ₛₗ f) := ) :
map (g ∘ₛₗ f) hgf = map g hg map f hf