Documentation

Mathlib.LinearAlgebra.Matrix.GeneralLinearGroup.Defs

The General Linear group GL(n,R) #

This file defines the elements of the General Linear group Matrix.GeneralLinearGroup n R, consisting of all invertible n by n R-matrices.

Main definitions #

Tags #

matrix group, group, matrix inverse

@[reducible, inline]
abbrev Matrix.GeneralLinearGroup (n : Type u) (R : Type v) [DecidableEq n] [Fintype n] [CommRing R] :
Type (max v u)

GL n R is the group of n by n R-matrices with unit determinant. Defined as a subtype of matrices

Equations

GL n R is the group of n by n R-matrices with unit determinant. Defined as a subtype of matrices

Equations
instance Matrix.GeneralLinearGroup.instCoeFun {n : Type u} [DecidableEq n] [Fintype n] {R : Type v} [CommRing R] :
CoeFun (GL n R) fun (x : GL n R) => nnR
Equations

The determinant of a unit matrix is itself a unit.

Equations
@[simp]
theorem Matrix.GeneralLinearGroup.val_inv_det_apply {n : Type u} [DecidableEq n] [Fintype n] {R : Type v} [CommRing R] (A : GL n R) :
(det A)⁻¹ = (↑A⁻¹).det
@[simp]
theorem Matrix.GeneralLinearGroup.val_det_apply {n : Type u} [DecidableEq n] [Fintype n] {R : Type v} [CommRing R] (A : GL n R) :
(det A) = (↑A).det
theorem Matrix.GeneralLinearGroup.det_ne_zero {n : Type u} [DecidableEq n] [Fintype n] {R : Type v} [CommRing R] [Nontrivial R] (g : GL n R) :
(↑g).det 0
def Matrix.GeneralLinearGroup.mk' {n : Type u} [DecidableEq n] [Fintype n] {R : Type v} [CommRing R] (A : Matrix n n R) :
Invertible A.detGL n R

Given a matrix with invertible determinant, we get an element of GL n R.

Equations
noncomputable def Matrix.GeneralLinearGroup.mk'' {n : Type u} [DecidableEq n] [Fintype n] {R : Type v} [CommRing R] (A : Matrix n n R) (h : IsUnit A.det) :
GL n R

Given a matrix with unit determinant, we get an element of GL n R.

Equations
def Matrix.GeneralLinearGroup.mkOfDetNeZero {n : Type u} [DecidableEq n] [Fintype n] {K : Type u_1} [Field K] (A : Matrix n n K) (h : A.det 0) :
GL n K

Given a matrix with non-zero determinant over a field, we get an element of GL n K.

Equations
theorem Matrix.GeneralLinearGroup.ext_iff {n : Type u} [DecidableEq n] [Fintype n] {R : Type v} [CommRing R] (A B : GL n R) :
A = B ∀ (i j : n), A i j = B i j
theorem Matrix.GeneralLinearGroup.ext {n : Type u} [DecidableEq n] [Fintype n] {R : Type v} [CommRing R] A B : GL n R (h : ∀ (i j : n), A i j = B i j) :
A = B

Not marked @[ext] as the ext tactic already solves this.

@[simp]
theorem Matrix.GeneralLinearGroup.coe_mul {n : Type u} [DecidableEq n] [Fintype n] {R : Type v} [CommRing R] (A B : GL n R) :
↑(A * B) = A * B
@[simp]
theorem Matrix.GeneralLinearGroup.coe_one {n : Type u} [DecidableEq n] [Fintype n] {R : Type v} [CommRing R] :
1 = 1
theorem Matrix.GeneralLinearGroup.coe_inv {n : Type u} [DecidableEq n] [Fintype n] {R : Type v} [CommRing R] (A : GL n R) :
A⁻¹ = (↑A)⁻¹
@[deprecated Matrix.GeneralLinearGroup.toLin (since := "2024-11-26")]

Alias of Matrix.GeneralLinearGroup.toLin.


The groups GL n R (notation for Matrix.GeneralLinearGroup n R) and LinearMap.GeneralLinearGroup R (n → R) are multiplicatively equivalent

Equations
@[simp]
theorem Matrix.GeneralLinearGroup.coe_toLin {n : Type u} [DecidableEq n] [Fintype n] {R : Type v} [CommRing R] (A : GL n R) :
(toLin A) = (↑A).mulVecLin
@[simp]
theorem Matrix.GeneralLinearGroup.toLin_apply {n : Type u} [DecidableEq n] [Fintype n] {R : Type v} [CommRing R] (A : GL n R) (v : nR) :
(toLin A) v = (↑A).mulVecLin v
def Matrix.GeneralLinearGroup.map {n : Type u} [DecidableEq n] [Fintype n] {R : Type v} [CommRing R] {S : Type u_1} [CommRing S] (f : R →+* S) :
GL n R →* GL n S

A ring homomorphism f : R →+* S induces a homomorphism GLₙ(f) : GLₙ(R) →* GLₙ(S).

Equations
@[simp]
theorem Matrix.GeneralLinearGroup.val_map_apply {n : Type u} [DecidableEq n] [Fintype n] {R : Type v} [CommRing R] {S : Type u_1} [CommRing S] (f : R →+* S) (u : (Matrix n n R)ˣ) :
((map f) u) = (↑u).map f
@[simp]
theorem Matrix.GeneralLinearGroup.map_apply {n : Type u} [DecidableEq n] [Fintype n] {R : Type v} [CommRing R] {S : Type u_1} [CommRing S] (f : R →+* S) (i j : n) (g : GL n R) :
((map f) g) i j = f (g i j)
@[simp]
theorem Matrix.GeneralLinearGroup.map_comp {n : Type u} [DecidableEq n] [Fintype n] {R : Type v} [CommRing R] {S : Type u_1} {T : Type u_2} [CommRing S] [CommRing T] (f : T →+* R) (g : R →+* S) :
map (g.comp f) = (map g).comp (map f)
@[simp]
theorem Matrix.GeneralLinearGroup.map_comp_apply {n : Type u} [DecidableEq n] [Fintype n] {R : Type v} [CommRing R] {S : Type u_1} {T : Type u_2} [CommRing S] [CommRing T] (f : T →+* R) (g : R →+* S) (x : GL n T) :
((map g).comp (map f)) x = (map g) ((map f) x)
@[simp]
theorem Matrix.GeneralLinearGroup.map_one {n : Type u} [DecidableEq n] [Fintype n] {R : Type v} [CommRing R] {S : Type u_1} [CommRing S] (f : R →+* S) :
(map f) 1 = 1
theorem Matrix.GeneralLinearGroup.map_mul {n : Type u} [DecidableEq n] [Fintype n] {R : Type v} [CommRing R] {S : Type u_1} [CommRing S] (f : R →+* S) (g h : GL n R) :
(map f) (g * h) = (map f) g * (map f) h
theorem Matrix.GeneralLinearGroup.map_inv {n : Type u} [DecidableEq n] [Fintype n] {R : Type v} [CommRing R] {S : Type u_1} [CommRing S] (f : R →+* S) (g : GL n R) :
(map f) g⁻¹ = ((map f) g)⁻¹
theorem Matrix.GeneralLinearGroup.map_det {n : Type u} [DecidableEq n] [Fintype n] {R : Type v} [CommRing R] {S : Type u_1} [CommRing S] (f : R →+* S) (g : GL n R) :
det ((map f) g) = (Units.map f) (det g)
theorem Matrix.GeneralLinearGroup.map_mul_map_inv {n : Type u} [DecidableEq n] [Fintype n] {R : Type v} [CommRing R] {S : Type u_1} [CommRing S] (f : R →+* S) (g : GL n R) :
(map f) g * (map f) g⁻¹ = 1
theorem Matrix.GeneralLinearGroup.map_inv_mul_map {n : Type u} [DecidableEq n] [Fintype n] {R : Type v} [CommRing R] {S : Type u_1} [CommRing S] (f : R →+* S) (g : GL n R) :
(map f) g⁻¹ * (map f) g = 1
@[simp]
theorem Matrix.GeneralLinearGroup.coe_map_mul_map_inv {n : Type u} [DecidableEq n] [Fintype n] {R : Type v} [CommRing R] {S : Type u_1} [CommRing S] (f : R →+* S) (g : GL n R) :
(↑g).map f * (↑g)⁻¹.map f = 1
@[simp]
theorem Matrix.GeneralLinearGroup.coe_map_inv_mul_map {n : Type u} [DecidableEq n] [Fintype n] {R : Type v} [CommRing R] {S : Type u_1} [CommRing S] (f : R →+* S) (g : GL n R) :
(↑g)⁻¹.map f * (↑g).map f = 1

toGL is the map from the special linear group to the general linear group.

Equations
@[deprecated Matrix.SpecialLinearGroup.toGL (since := "2024-11-26")]

Alias of Matrix.SpecialLinearGroup.toGL.


toGL is the map from the special linear group to the general linear group.

Equations
@[simp]
theorem Matrix.SpecialLinearGroup.toGL_inj {n : Type u} [DecidableEq n] [Fintype n] {R : Type v} [CommRing R] (g g' : SpecialLinearGroup n R) :
toGL g = toGL g' g = g'
@[simp]
theorem Matrix.SpecialLinearGroup.coe_GL_coe_matrix {n : Type u} [DecidableEq n] [Fintype n] {R : Type v} [CommRing R] (g : SpecialLinearGroup n R) :
(toGL g) = g
def Matrix.SpecialLinearGroup.mapGL {n : Type u} [DecidableEq n] [Fintype n] {R : Type v} [CommRing R] (S : Type u_1) [CommRing S] [Algebra R S] :

mapGL is the map from the special linear group over R to the general linear group over S, where S is an R-algebra.

Equations
@[simp]
theorem Matrix.SpecialLinearGroup.mapGL_inj {n : Type u} [DecidableEq n] [Fintype n] {R : Type v} [CommRing R] {S : Type u_1} [CommRing S] [Algebra R S] [FaithfulSMul R S] (g g' : SpecialLinearGroup n R) :
(mapGL S) g = (mapGL S) g' g = g'
@[simp]
theorem Matrix.SpecialLinearGroup.mapGL_coe_matrix {n : Type u} [DecidableEq n] [Fintype n] {R : Type v} [CommRing R] {S : Type u_1} [CommRing S] [Algebra R S] (g : SpecialLinearGroup n R) :
((mapGL S) g) = ((map (algebraMap R S)) g)

This is the subgroup of nxn matrices with entries over a linear ordered ring and positive determinant.

Equations

This is the subgroup of nxn matrices with entries over a linear ordered ring and positive determinant.

Equations
  • One or more equations did not get rendered due to their size.
@[simp]
theorem Matrix.mem_glpos {n : Type u} {R : Type v} [DecidableEq n] [Fintype n] [CommRing R] [LinearOrder R] [IsStrictOrderedRing R] (A : GL n R) :
theorem Matrix.GLPos.det_ne_zero {n : Type u} {R : Type v} [DecidableEq n] [Fintype n] [CommRing R] [LinearOrder R] [IsStrictOrderedRing R] (A : (GLPos n R)) :
(↑A).det 0

Formal operation of negation on general linear group on even cardinality n given by negating each element.

Equations
@[simp]
theorem Matrix.GLPos.coe_neg_GL {n : Type u} {R : Type v} [DecidableEq n] [Fintype n] [CommRing R] [LinearOrder R] [IsStrictOrderedRing R] [Fact (Even (Fintype.card n))] (g : (GLPos n R)) :
↑(-g) = -g
@[simp]
theorem Matrix.GLPos.coe_neg {n : Type u} {R : Type v} [DecidableEq n] [Fintype n] [CommRing R] [LinearOrder R] [IsStrictOrderedRing R] [Fact (Even (Fintype.card n))] (g : (GLPos n R)) :
↑(-g) = -g
@[simp]
theorem Matrix.GLPos.coe_neg_apply {n : Type u} {R : Type v} [DecidableEq n] [Fintype n] [CommRing R] [LinearOrder R] [IsStrictOrderedRing R] [Fact (Even (Fintype.card n))] (g : (GLPos n R)) (i j : n) :
↑(-g) i j = -g i j

Matrix.SpecialLinearGroup n R embeds into GL_pos n R

Equations
@[simp]

Coercing a Matrix.SpecialLinearGroup via GL_pos and GL is the same as coercing straight to a matrix.