Documentation

Mathlib.LinearAlgebra.Finsupp.Pi

Properties of the module α →₀ M #

Tags #

function with finite support, module, linear algebra

noncomputable def Finsupp.LinearEquiv.finsuppUnique (R : Type u_1) (M : Type u_3) [AddCommMonoid M] [Semiring R] [Module R M] (α : Type u_4) [Unique α] :
(α →₀ M) ≃ₗ[R] M

If α has a unique term, then the type of finitely supported functions α →₀ M is R-linearly equivalent to M.

Equations
  • One or more equations did not get rendered due to their size.
@[simp]
theorem Finsupp.LinearEquiv.finsuppUnique_apply {R : Type u_1} {M : Type u_3} [AddCommMonoid M] [Semiring R] [Module R M] (α : Type u_4) [Unique α] (f : α →₀ M) :
(finsuppUnique R M α) f = f default
@[simp]
theorem Finsupp.LinearEquiv.finsuppUnique_symm_apply {R : Type u_1} {M : Type u_3} [AddCommMonoid M] [Semiring R] [Module R M] {α : Type u_4} [Unique α] (m : M) :
def Finsupp.lcoeFun {α : Type u_1} {M : Type u_2} {R : Type u_5} [Semiring R] [AddCommMonoid M] [Module R M] :
(α →₀ M) →ₗ[R] αM

Forget that a function is finitely supported.

This is the linear version of Finsupp.toFun.

Equations
@[simp]
theorem Finsupp.lcoeFun_apply {α : Type u_1} {M : Type u_2} {R : Type u_5} [Semiring R] [AddCommMonoid M] [Module R M] (a✝ : α →₀ M) (a : α) :
lcoeFun a✝ a = a✝ a
def LinearMap.splittingOfFunOnFintypeSurjective {R : Type u_1} {M : Type u_2} [Semiring R] [AddCommMonoid M] [Module R M] {α : Type u_4} [Finite α] (f : M →ₗ[R] αR) (s : Function.Surjective f) :
(αR) →ₗ[R] M

A surjective linear map to functions on a finite type has a splitting.

Equations