Documentation

Mathlib.LinearAlgebra.CrossProduct

Cross products #

This module defines the cross product of vectors in R3 for R a commutative ring, as a bilinear map.

Main definitions #

Main results #

Notation #

The locale Matrix gives the following notation:

Tags #

crossproduct

def crossProduct {R : Type u_1} [CommRing R] :
(Fin 3R) →ₗ[R] (Fin 3R) →ₗ[R] Fin 3R

The cross product of two vectors in R3 for R a commutative ring.

Equations

The cross product of two vectors in R3 for R a commutative ring.

Equations
theorem cross_apply {R : Type u_1} [CommRing R] (a b : Fin 3R) :
(crossProduct a) b = ![a 1 * b 2 - a 2 * b 1, a 2 * b 0 - a 0 * b 2, a 0 * b 1 - a 1 * b 0]
@[simp]
theorem cross_anticomm {R : Type u_1} [CommRing R] (v w : Fin 3R) :
theorem neg_cross {R : Type u_1} [CommRing R] (v w : Fin 3R) :

Alias of cross_anticomm.

@[simp]
theorem cross_anticomm' {R : Type u_1} [CommRing R] (v w : Fin 3R) :
@[simp]
theorem cross_self {R : Type u_1} [CommRing R] (v : Fin 3R) :
(crossProduct v) v = 0
@[simp]
theorem dot_self_cross {R : Type u_1} [CommRing R] (v w : Fin 3R) :

The cross product of two vectors is perpendicular to the first vector.

@[simp]
theorem dot_cross_self {R : Type u_1} [CommRing R] (v w : Fin 3R) :

The cross product of two vectors is perpendicular to the second vector.

theorem triple_product_permutation {R : Type u_1} [CommRing R] (u v w : Fin 3R) :

Cyclic permutations preserve the triple product. See also triple_product_eq_det.

theorem triple_product_eq_det {R : Type u_1} [CommRing R] (u v w : Fin 3R) :

The triple product of u, v, and w is equal to the determinant of the matrix with those vectors as its rows.

theorem cross_dot_cross {R : Type u_1} [CommRing R] (u v w x : Fin 3R) :

The scalar quadruple product identity, related to the Binet-Cauchy identity.

theorem leibniz_cross {R : Type u_1} [CommRing R] (u v w : Fin 3R) :

The cross product satisfies the Leibniz lie property.

def Cross.lieRing {R : Type u_1} [CommRing R] :
LieRing (Fin 3R)

The three-dimensional vectors together with the operations + and ×₃ form a Lie ring. Note we do not make this an instance as a conflicting one already exists via LieRing.ofAssociativeRing.

Equations
theorem cross_cross {R : Type u_1} [CommRing R] (u v w : Fin 3R) :
theorem jacobi_cross {R : Type u_1} [CommRing R] (u v w : Fin 3R) :

Jacobi identity: For a cross product of three vectors, their sum over the three even permutations is equal to the zero vector.

theorem cross_cross_eq_smul_sub_smul {R : Type u_1} [CommRing R] (u v w : Fin 3R) :
(crossProduct ((crossProduct u) v)) w = (u ⬝ᵥ w) v - (v ⬝ᵥ w) u

The scalar triple product expansion of the vector triple product.

theorem cross_cross_eq_smul_sub_smul' {R : Type u_1} [CommRing R] (u v w : Fin 3R) :
(crossProduct u) ((crossProduct v) w) = (u ⬝ᵥ w) v - (v ⬝ᵥ u) w

Alternative form of the scalar triple product expansion of the vector triple product.