Documentation

Mathlib.GroupTheory.QuotientGroup.Defs

Quotients of groups by normal subgroups #

This file defines the group structure on the quotient by a normal subgroup.

Main definitions #

Tags #

quotient groups

def QuotientGroup.con {G : Type u} [Group G] (N : Subgroup G) [nN : N.Normal] :
Con G

The congruence relation generated by a normal subgroup.

Equations
def QuotientAddGroup.con {G : Type u} [AddGroup G] (N : AddSubgroup G) [nN : N.Normal] :

The additive congruence relation generated by a normal additive subgroup.

Equations
theorem QuotientGroup.con_ker_eq_conKer {G : Type u} [Group G] {M : Type x} [Monoid M] (f : G →* M) :

The congruence relation defined by the kernel of a group homomorphism is equal to its kernel as a congruence relation.

The additive congruence relation defined by the kernel of an additive group homomorphism is equal to its kernel as an additive congruence relation.

def QuotientGroup.mk' {G : Type u} [Group G] (N : Subgroup G) [nN : N.Normal] :
G →* G N

The group homomorphism from G to G/N.

Equations
def QuotientAddGroup.mk' {G : Type u} [AddGroup G] (N : AddSubgroup G) [nN : N.Normal] :
G →+ G N

The additive group homomorphism from G to G/N.

Equations
@[simp]
theorem QuotientGroup.coe_mk' {G : Type u} [Group G] (N : Subgroup G) [nN : N.Normal] :
(mk' N) = mk
@[simp]
theorem QuotientAddGroup.coe_mk' {G : Type u} [AddGroup G] (N : AddSubgroup G) [nN : N.Normal] :
(mk' N) = mk
@[simp]
theorem QuotientGroup.mk'_apply {G : Type u} [Group G] (N : Subgroup G) [nN : N.Normal] (x : G) :
(mk' N) x = x
@[simp]
theorem QuotientAddGroup.mk'_apply {G : Type u} [AddGroup G] (N : AddSubgroup G) [nN : N.Normal] (x : G) :
(mk' N) x = x
theorem QuotientGroup.mk'_eq_mk' {G : Type u} [Group G] (N : Subgroup G) [nN : N.Normal] {x y : G} :
(mk' N) x = (mk' N) y zN, x * z = y
theorem QuotientAddGroup.mk'_eq_mk' {G : Type u} [AddGroup G] (N : AddSubgroup G) [nN : N.Normal] {x y : G} :
(mk' N) x = (mk' N) y zN, x + z = y
theorem QuotientGroup.monoidHom_ext {G : Type u} [Group G] (N : Subgroup G) [nN : N.Normal] {M : Type x} [Monoid M] f g : G N →* M (h : f.comp (mk' N) = g.comp (mk' N)) :
f = g

Two MonoidHoms from a quotient group are equal if their compositions with QuotientGroup.mk' are equal.

See note [partially-applied ext lemmas].

theorem QuotientAddGroup.addMonoidHom_ext {G : Type u} [AddGroup G] (N : AddSubgroup G) [nN : N.Normal] {M : Type x} [AddMonoid M] f g : G N →+ M (h : f.comp (mk' N) = g.comp (mk' N)) :
f = g

Two AddMonoidHoms from an additive quotient group are equal if their compositions with AddQuotientGroup.mk' are equal.

See note [partially-applied ext lemmas].

theorem QuotientGroup.monoidHom_ext_iff {G : Type u} [Group G] {N : Subgroup G} [nN : N.Normal] {M : Type x} [Monoid M] {f g : G N →* M} :
f = g f.comp (mk' N) = g.comp (mk' N)
theorem QuotientAddGroup.addMonoidHom_ext_iff {G : Type u} [AddGroup G] {N : AddSubgroup G} [nN : N.Normal] {M : Type x} [AddMonoid M] {f g : G N →+ M} :
f = g f.comp (mk' N) = g.comp (mk' N)
@[simp]
theorem QuotientGroup.eq_one_iff {G : Type u} [Group G] {N : Subgroup G} [N.Normal] (x : G) :
x = 1 x N
@[simp]
theorem QuotientAddGroup.eq_zero_iff {G : Type u} [AddGroup G] {N : AddSubgroup G} [N.Normal] (x : G) :
x = 0 x N
@[simp]
theorem QuotientGroup.mk'_comp_subtype {G : Type u} [Group G] (N : Subgroup G) [nN : N.Normal] :
(mk' N).comp N.subtype = 1
@[simp]
theorem QuotientAddGroup.mk'_comp_subtype {G : Type u} [AddGroup G] (N : AddSubgroup G) [nN : N.Normal] :
(mk' N).comp N.subtype = 0
@[simp]
theorem QuotientGroup.range_mk' {G : Type u} [Group G] (N : Subgroup G) [nN : N.Normal] :
@[simp]
theorem QuotientAddGroup.range_mk' {G : Type u} [AddGroup G] (N : AddSubgroup G) [nN : N.Normal] :
theorem QuotientGroup.ker_le_range_iff {G : Type u} [Group G] {H : Type v} [Group H] {I : Type w} [MulOneClass I] (f : G →* H) [f.range.Normal] (g : H →* I) :
theorem QuotientAddGroup.ker_le_range_iff {G : Type u} [AddGroup G] {H : Type v} [AddGroup H] {I : Type w} [AddZeroClass I] (f : G →+ H) [f.range.Normal] (g : H →+ I) :
@[simp]
theorem QuotientGroup.ker_mk' {G : Type u} [Group G] (N : Subgroup G) [nN : N.Normal] :
(mk' N).ker = N
@[simp]
theorem QuotientAddGroup.ker_mk' {G : Type u} [AddGroup G] (N : AddSubgroup G) [nN : N.Normal] :
(mk' N).ker = N
theorem QuotientGroup.eq_iff_div_mem {G : Type u} [Group G] {N : Subgroup G} [nN : N.Normal] {x y : G} :
x = y x / y N
theorem QuotientAddGroup.eq_iff_sub_mem {G : Type u} [AddGroup G] {N : AddSubgroup G} [nN : N.Normal] {x y : G} :
x = y x - y N
Equations
Equations
@[simp]
theorem QuotientGroup.mk_one {G : Type u} [Group G] (N : Subgroup G) [nN : N.Normal] :
1 = 1
@[simp]
theorem QuotientAddGroup.mk_zero {G : Type u} [AddGroup G] (N : AddSubgroup G) [nN : N.Normal] :
0 = 0
@[simp]
theorem QuotientGroup.mk_mul {G : Type u} [Group G] (N : Subgroup G) [nN : N.Normal] (a b : G) :
↑(a * b) = a * b
@[simp]
theorem QuotientAddGroup.mk_add {G : Type u} [AddGroup G] (N : AddSubgroup G) [nN : N.Normal] (a b : G) :
↑(a + b) = a + b
@[simp]
theorem QuotientGroup.mk_inv {G : Type u} [Group G] (N : Subgroup G) [nN : N.Normal] (a : G) :
a⁻¹ = (↑a)⁻¹
@[simp]
theorem QuotientAddGroup.mk_neg {G : Type u} [AddGroup G] (N : AddSubgroup G) [nN : N.Normal] (a : G) :
↑(-a) = -a
@[simp]
theorem QuotientGroup.mk_div {G : Type u} [Group G] (N : Subgroup G) [nN : N.Normal] (a b : G) :
↑(a / b) = a / b
@[simp]
theorem QuotientAddGroup.mk_sub {G : Type u} [AddGroup G] (N : AddSubgroup G) [nN : N.Normal] (a b : G) :
↑(a - b) = a - b
@[simp]
theorem QuotientGroup.mk_pow {G : Type u} [Group G] (N : Subgroup G) [nN : N.Normal] (a : G) (n : ) :
↑(a ^ n) = a ^ n
@[simp]
theorem QuotientAddGroup.mk_nsmul {G : Type u} [AddGroup G] (N : AddSubgroup G) [nN : N.Normal] (a : G) (n : ) :
↑(n a) = n a
@[simp]
theorem QuotientGroup.mk_zpow {G : Type u} [Group G] (N : Subgroup G) [nN : N.Normal] (a : G) (n : ) :
↑(a ^ n) = a ^ n
@[simp]
theorem QuotientAddGroup.mk_zsmul {G : Type u} [AddGroup G] (N : AddSubgroup G) [nN : N.Normal] (a : G) (n : ) :
↑(n a) = n a
@[simp]
theorem QuotientGroup.map_mk'_self {G : Type u} [Group G] (N : Subgroup G) [nN : N.Normal] :
@[simp]
def Con.subgroup {G : Type u} [Group G] (c : Con G) :

The subgroup defined by the class of 1 for a congruence relation on a group.

Equations
  • c.subgroup = { carrier := {x : G | c x 1}, mul_mem' := , one_mem' := , inv_mem' := }

The AddSubgroup defined by the class of 0 for an additive congruence relation on an AddGroup.

Equations
  • c.addSubgroup = { carrier := {x : G | c x 0}, add_mem' := , zero_mem' := , neg_mem' := }
@[simp]
theorem Con.mem_subgroup_iff {G : Type u} [Group G] {c : Con G} {x : G} :
x c.subgroup c x 1
@[simp]
theorem AddCon.mem_addSubgroup_iff {G : Type u} [AddGroup G] {c : AddCon G} {x : G} :
x c.addSubgroup c x 0
@[simp]

The normal subgroups correspond to the congruence relations on a group.

Equations
  • One or more equations did not get rendered due to their size.

The normal subgroups correspond to the additive congruence relations on an AddGroup.

Equations
  • One or more equations did not get rendered due to their size.
theorem QuotientGroup.con_mono {G : Type u} [Group G] {N M : Subgroup G} [hN : N.Normal] [hM : M.Normal] (h : N M) :
def QuotientGroup.lift {G : Type u} [Group G] (N : Subgroup G) [nN : N.Normal] {M : Type x} [Monoid M] (φ : G →* M) (HN : N φ.ker) :
G N →* M

A group homomorphism φ : G →* M with N ⊆ ker(φ) descends (i.e. lifts) to a group homomorphism G/N →* M.

Equations
def QuotientAddGroup.lift {G : Type u} [AddGroup G] (N : AddSubgroup G) [nN : N.Normal] {M : Type x} [AddMonoid M] (φ : G →+ M) (HN : N φ.ker) :
G N →+ M

An AddGroup homomorphism φ : G →+ M with N ⊆ ker(φ) descends (i.e. lifts) to a group homomorphism G/N →* M.

Equations
@[simp]
theorem QuotientGroup.lift_mk {G : Type u} [Group G] (N : Subgroup G) [nN : N.Normal] {M : Type x} [Monoid M] {φ : G →* M} (HN : N φ.ker) (g : G) :
(lift N φ HN) g = φ g
@[simp]
theorem QuotientAddGroup.lift_mk {G : Type u} [AddGroup G] (N : AddSubgroup G) [nN : N.Normal] {M : Type x} [AddMonoid M] {φ : G →+ M} (HN : N φ.ker) (g : G) :
(lift N φ HN) g = φ g
@[simp]
theorem QuotientGroup.lift_mk' {G : Type u} [Group G] (N : Subgroup G) [nN : N.Normal] {M : Type x} [Monoid M] {φ : G →* M} (HN : N φ.ker) (g : G) :
(lift N φ HN) g = φ g
@[simp]
theorem QuotientAddGroup.lift_mk' {G : Type u} [AddGroup G] (N : AddSubgroup G) [nN : N.Normal] {M : Type x} [AddMonoid M] {φ : G →+ M} (HN : N φ.ker) (g : G) :
(lift N φ HN) g = φ g
@[simp]
theorem QuotientGroup.lift_comp_mk' {G : Type u} [Group G] (N : Subgroup G) [nN : N.Normal] {M : Type x} [Monoid M] (φ : G →* M) (HN : N φ.ker) :
(lift N φ HN).comp (mk' N) = φ
@[simp]
theorem QuotientAddGroup.lift_comp_mk' {G : Type u} [AddGroup G] (N : AddSubgroup G) [nN : N.Normal] {M : Type x} [AddMonoid M] (φ : G →+ M) (HN : N φ.ker) :
(lift N φ HN).comp (mk' N) = φ
@[simp]
theorem QuotientGroup.lift_quot_mk {G : Type u} [Group G] (N : Subgroup G) [nN : N.Normal] {M : Type x} [Monoid M] {φ : G →* M} (HN : N φ.ker) (g : G) :
(lift N φ HN) (Quot.mk (⇑(leftRel N)) g) = φ g
@[simp]
theorem QuotientAddGroup.lift_quot_mk {G : Type u} [AddGroup G] (N : AddSubgroup G) [nN : N.Normal] {M : Type x} [AddMonoid M] {φ : G →+ M} (HN : N φ.ker) (g : G) :
(lift N φ HN) (Quot.mk (⇑(leftRel N)) g) = φ g
theorem QuotientGroup.lift_surjective_of_surjective {G : Type u} [Group G] (N : Subgroup G) [nN : N.Normal] {M : Type x} [Monoid M] (φ : G →* M) ( : Function.Surjective φ) (HN : N φ.ker) :
theorem QuotientAddGroup.lift_surjective_of_surjective {G : Type u} [AddGroup G] (N : AddSubgroup G) [nN : N.Normal] {M : Type x} [AddMonoid M] (φ : G →+ M) ( : Function.Surjective φ) (HN : N φ.ker) :
theorem QuotientGroup.ker_lift {G : Type u} [Group G] (N : Subgroup G) [nN : N.Normal] {M : Type x} [Monoid M] (φ : G →* M) (HN : N φ.ker) :
(lift N φ HN).ker = Subgroup.map (mk' N) φ.ker
theorem QuotientAddGroup.ker_lift {G : Type u} [AddGroup G] (N : AddSubgroup G) [nN : N.Normal] {M : Type x} [AddMonoid M] (φ : G →+ M) (HN : N φ.ker) :
(lift N φ HN).ker = AddSubgroup.map (mk' N) φ.ker
def QuotientGroup.map {G : Type u} [Group G] (N : Subgroup G) [nN : N.Normal] {H : Type v} [Group H] (M : Subgroup H) [M.Normal] (f : G →* H) (h : N Subgroup.comap f M) :
G N →* H M

A group homomorphism f : G →* H induces a map G/N →* H/M if N ⊆ f⁻¹(M).

Equations
def QuotientAddGroup.map {G : Type u} [AddGroup G] (N : AddSubgroup G) [nN : N.Normal] {H : Type v} [AddGroup H] (M : AddSubgroup H) [M.Normal] (f : G →+ H) (h : N AddSubgroup.comap f M) :
G N →+ H M

An AddGroup homomorphism f : G →+ H induces a map G/N →+ H/M if N ⊆ f⁻¹(M).

Equations
@[simp]
theorem QuotientGroup.map_mk {G : Type u} [Group G] (N : Subgroup G) [nN : N.Normal] {H : Type v} [Group H] (M : Subgroup H) [M.Normal] (f : G →* H) (h : N Subgroup.comap f M) (x : G) :
(map N M f h) x = (f x)
@[simp]
theorem QuotientAddGroup.map_mk {G : Type u} [AddGroup G] (N : AddSubgroup G) [nN : N.Normal] {H : Type v} [AddGroup H] (M : AddSubgroup H) [M.Normal] (f : G →+ H) (h : N AddSubgroup.comap f M) (x : G) :
(map N M f h) x = (f x)
theorem QuotientGroup.map_mk' {G : Type u} [Group G] (N : Subgroup G) [nN : N.Normal] {H : Type v} [Group H] (M : Subgroup H) [M.Normal] (f : G →* H) (h : N Subgroup.comap f M) (x : G) :
(map N M f h) ((mk' N) x) = (f x)
theorem QuotientAddGroup.map_mk' {G : Type u} [AddGroup G] (N : AddSubgroup G) [nN : N.Normal] {H : Type v} [AddGroup H] (M : AddSubgroup H) [M.Normal] (f : G →+ H) (h : N AddSubgroup.comap f M) (x : G) :
(map N M f h) ((mk' N) x) = (f x)
theorem QuotientGroup.map_surjective_of_surjective {G : Type u} [Group G] (N : Subgroup G) [nN : N.Normal] {H : Type v} [Group H] (M : Subgroup H) [M.Normal] (f : G →* H) (hf : Function.Surjective (mk f)) (h : N Subgroup.comap f M) :
theorem QuotientAddGroup.map_surjective_of_surjective {G : Type u} [AddGroup G] (N : AddSubgroup G) [nN : N.Normal] {H : Type v} [AddGroup H] (M : AddSubgroup H) [M.Normal] (f : G →+ H) (hf : Function.Surjective (mk f)) (h : N AddSubgroup.comap f M) :
theorem QuotientGroup.ker_map {G : Type u} [Group G] (N : Subgroup G) [nN : N.Normal] {H : Type v} [Group H] (M : Subgroup H) [M.Normal] (f : G →* H) (h : N Subgroup.comap f M) :
(map N M f h).ker = Subgroup.map (mk' N) (Subgroup.comap f M)
theorem QuotientAddGroup.ker_map {G : Type u} [AddGroup G] (N : AddSubgroup G) [nN : N.Normal] {H : Type v} [AddGroup H] (M : AddSubgroup H) [M.Normal] (f : G →+ H) (h : N AddSubgroup.comap f M) :
theorem QuotientGroup.map_id_apply {G : Type u} [Group G] (N : Subgroup G) [nN : N.Normal] (h : N Subgroup.comap (MonoidHom.id G) N := ) (x : G N) :
(map N N (MonoidHom.id G) h) x = x
theorem QuotientAddGroup.map_id_apply {G : Type u} [AddGroup G] (N : AddSubgroup G) [nN : N.Normal] (h : N AddSubgroup.comap (AddMonoidHom.id G) N := ) (x : G N) :
(map N N (AddMonoidHom.id G) h) x = x
@[simp]
theorem QuotientGroup.map_id {G : Type u} [Group G] (N : Subgroup G) [nN : N.Normal] (h : N Subgroup.comap (MonoidHom.id G) N := ) :
@[simp]
theorem QuotientAddGroup.map_id {G : Type u} [AddGroup G] (N : AddSubgroup G) [nN : N.Normal] (h : N AddSubgroup.comap (AddMonoidHom.id G) N := ) :
@[simp]
theorem QuotientGroup.map_map {G : Type u} [Group G] (N : Subgroup G) [nN : N.Normal] {H : Type v} [Group H] {I : Type u_1} [Group I] (M : Subgroup H) (O : Subgroup I) [M.Normal] [O.Normal] (f : G →* H) (g : H →* I) (hf : N Subgroup.comap f M) (hg : M Subgroup.comap g O) (hgf : N Subgroup.comap (g.comp f) O := ) (x : G N) :
(map M O g hg) ((map N M f hf) x) = (map N O (g.comp f) hgf) x
@[simp]
theorem QuotientAddGroup.map_map {G : Type u} [AddGroup G] (N : AddSubgroup G) [nN : N.Normal] {H : Type v} [AddGroup H] {I : Type u_1} [AddGroup I] (M : AddSubgroup H) (O : AddSubgroup I) [M.Normal] [O.Normal] (f : G →+ H) (g : H →+ I) (hf : N AddSubgroup.comap f M) (hg : M AddSubgroup.comap g O) (hgf : N AddSubgroup.comap (g.comp f) O := ) (x : G N) :
(map M O g hg) ((map N M f hf) x) = (map N O (g.comp f) hgf) x
@[simp]
theorem QuotientGroup.map_comp_map {G : Type u} [Group G] (N : Subgroup G) [nN : N.Normal] {H : Type v} [Group H] {I : Type u_1} [Group I] (M : Subgroup H) (O : Subgroup I) [M.Normal] [O.Normal] (f : G →* H) (g : H →* I) (hf : N Subgroup.comap f M) (hg : M Subgroup.comap g O) (hgf : N Subgroup.comap (g.comp f) O := ) :
(map M O g hg).comp (map N M f hf) = map N O (g.comp f) hgf
@[simp]
theorem QuotientAddGroup.map_comp_map {G : Type u} [AddGroup G] (N : AddSubgroup G) [nN : N.Normal] {H : Type v} [AddGroup H] {I : Type u_1} [AddGroup I] (M : AddSubgroup H) (O : AddSubgroup I) [M.Normal] [O.Normal] (f : G →+ H) (g : H →+ I) (hf : N AddSubgroup.comap f M) (hg : M AddSubgroup.comap g O) (hgf : N AddSubgroup.comap (g.comp f) O := ) :
(map M O g hg).comp (map N M f hf) = map N O (g.comp f) hgf
@[simp]
theorem QuotientGroup.image_coe {G : Type u} [Group G] (N : Subgroup G) [nN : N.Normal] :
mk '' N = 1
@[simp]
theorem QuotientAddGroup.image_coe {G : Type u} [AddGroup G] (N : AddSubgroup G) [nN : N.Normal] :
mk '' N = 0
theorem QuotientGroup.preimage_image_coe {G : Type u} [Group G] (N : Subgroup G) [nN : N.Normal] (s : Set G) :
mk ⁻¹' (mk '' s) = N * s
theorem QuotientAddGroup.preimage_image_coe {G : Type u} [AddGroup G] (N : AddSubgroup G) [nN : N.Normal] (s : Set G) :
mk ⁻¹' (mk '' s) = N + s
theorem QuotientGroup.image_coe_inj {G : Type u} [Group G] (N : Subgroup G) [nN : N.Normal] {s t : Set G} :
mk '' s = mk '' t N * s = N * t
theorem QuotientAddGroup.image_coe_inj {G : Type u} [AddGroup G] (N : AddSubgroup G) [nN : N.Normal] {s t : Set G} :
mk '' s = mk '' t N + s = N + t
def QuotientGroup.congr {G : Type u} [Group G] {H : Type v} [Group H] (G' : Subgroup G) (H' : Subgroup H) [G'.Normal] [H'.Normal] (e : G ≃* H) (he : Subgroup.map (↑e) G' = H') :
G G' ≃* H H'

QuotientGroup.congr lifts the isomorphism e : G ≃ H to G ⧸ G' ≃ H ⧸ H', given that e maps G to H.

Equations
def QuotientAddGroup.congr {G : Type u} [AddGroup G] {H : Type v} [AddGroup H] (G' : AddSubgroup G) (H' : AddSubgroup H) [G'.Normal] [H'.Normal] (e : G ≃+ H) (he : AddSubgroup.map (↑e) G' = H') :
G G' ≃+ H H'

QuotientAddGroup.congr lifts the isomorphism e : G ≃ H to G ⧸ G' ≃ H ⧸ H', given that e maps G to H.

Equations
@[simp]
theorem QuotientGroup.congr_mk {G : Type u} [Group G] {H : Type v} [Group H] (G' : Subgroup G) (H' : Subgroup H) [G'.Normal] [H'.Normal] (e : G ≃* H) (he : Subgroup.map (↑e) G' = H') (x : G) :
(congr G' H' e he) x = (e x)
theorem QuotientGroup.congr_mk' {G : Type u} [Group G] {H : Type v} [Group H] (G' : Subgroup G) (H' : Subgroup H) [G'.Normal] [H'.Normal] (e : G ≃* H) (he : Subgroup.map (↑e) G' = H') (x : G) :
(congr G' H' e he) ((mk' G') x) = (mk' H') (e x)
@[simp]
theorem QuotientGroup.congr_apply {G : Type u} [Group G] {H : Type v} [Group H] (G' : Subgroup G) (H' : Subgroup H) [G'.Normal] [H'.Normal] (e : G ≃* H) (he : Subgroup.map (↑e) G' = H') (x : G) :
(congr G' H' e he) x = (mk' H') (e x)
@[simp]
theorem QuotientGroup.congr_refl {G : Type u} [Group G] (G' : Subgroup G) [G'.Normal] (he : Subgroup.map (↑(MulEquiv.refl G)) G' = G' := ) :
congr G' G' (MulEquiv.refl G) he = MulEquiv.refl (G G')
@[simp]
theorem QuotientGroup.congr_symm {G : Type u} [Group G] {H : Type v} [Group H] (G' : Subgroup G) (H' : Subgroup H) [G'.Normal] [H'.Normal] (e : G ≃* H) (he : Subgroup.map (↑e) G' = H') :
(congr G' H' e he).symm = congr H' G' e.symm