Documentation

Mathlib.Geometry.Manifold.Algebra.SmoothFunctions

Algebraic structures over C^n functions #

In this file, we define instances of algebraic structures over C^n functions.

instance ContMDiffMap.instMul {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {E' : Type u_3} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H : Type u_4} [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} {H' : Type u_5} [TopologicalSpace H'] {I' : ModelWithCorners 𝕜 E' H'} {N : Type u_6} [TopologicalSpace N] [ChartedSpace H N] {n : WithTop ℕ∞} {G : Type u_10} [Mul G] [TopologicalSpace G] [ChartedSpace H' G] [ContMDiffMul I' n G] :
Mul (ContMDiffMap I I' N G n)
Equations
instance ContMDiffMap.instAdd {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {E' : Type u_3} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H : Type u_4} [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} {H' : Type u_5} [TopologicalSpace H'] {I' : ModelWithCorners 𝕜 E' H'} {N : Type u_6} [TopologicalSpace N] [ChartedSpace H N] {n : WithTop ℕ∞} {G : Type u_10} [Add G] [TopologicalSpace G] [ChartedSpace H' G] [ContMDiffAdd I' n G] :
Add (ContMDiffMap I I' N G n)
Equations
@[simp]
theorem ContMDiffMap.coe_mul {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {E' : Type u_3} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H : Type u_4} [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} {H' : Type u_5} [TopologicalSpace H'] {I' : ModelWithCorners 𝕜 E' H'} {N : Type u_6} [TopologicalSpace N] [ChartedSpace H N] {n : WithTop ℕ∞} {G : Type u_10} [Mul G] [TopologicalSpace G] [ChartedSpace H' G] [ContMDiffMul I' n G] (f g : ContMDiffMap I I' N G n) :
⇑(f * g) = f * g
@[simp]
theorem ContMDiffMap.coe_add {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {E' : Type u_3} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H : Type u_4} [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} {H' : Type u_5} [TopologicalSpace H'] {I' : ModelWithCorners 𝕜 E' H'} {N : Type u_6} [TopologicalSpace N] [ChartedSpace H N] {n : WithTop ℕ∞} {G : Type u_10} [Add G] [TopologicalSpace G] [ChartedSpace H' G] [ContMDiffAdd I' n G] (f g : ContMDiffMap I I' N G n) :
⇑(f + g) = f + g
@[simp]
theorem ContMDiffMap.mul_comp {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {E' : Type u_3} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H : Type u_4} [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} {H' : Type u_5} [TopologicalSpace H'] {I' : ModelWithCorners 𝕜 E' H'} {N : Type u_6} [TopologicalSpace N] [ChartedSpace H N] {E'' : Type u_7} [NormedAddCommGroup E''] [NormedSpace 𝕜 E''] {H'' : Type u_8} [TopologicalSpace H''] {I'' : ModelWithCorners 𝕜 E'' H''} {N' : Type u_9} [TopologicalSpace N'] [ChartedSpace H'' N'] {n : WithTop ℕ∞} {G : Type u_10} [Mul G] [TopologicalSpace G] [ChartedSpace H' G] [ContMDiffMul I' n G] (f g : ContMDiffMap I'' I' N' G n) (h : ContMDiffMap I I'' N N' n) :
(f * g).comp h = f.comp h * g.comp h
@[simp]
theorem ContMDiffMap.add_comp {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {E' : Type u_3} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H : Type u_4} [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} {H' : Type u_5} [TopologicalSpace H'] {I' : ModelWithCorners 𝕜 E' H'} {N : Type u_6} [TopologicalSpace N] [ChartedSpace H N] {E'' : Type u_7} [NormedAddCommGroup E''] [NormedSpace 𝕜 E''] {H'' : Type u_8} [TopologicalSpace H''] {I'' : ModelWithCorners 𝕜 E'' H''} {N' : Type u_9} [TopologicalSpace N'] [ChartedSpace H'' N'] {n : WithTop ℕ∞} {G : Type u_10} [Add G] [TopologicalSpace G] [ChartedSpace H' G] [ContMDiffAdd I' n G] (f g : ContMDiffMap I'' I' N' G n) (h : ContMDiffMap I I'' N N' n) :
(f + g).comp h = f.comp h + g.comp h
instance ContMDiffMap.instOne {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {E' : Type u_3} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H : Type u_4} [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} {H' : Type u_5} [TopologicalSpace H'] {I' : ModelWithCorners 𝕜 E' H'} {N : Type u_6} [TopologicalSpace N] [ChartedSpace H N] {n : WithTop ℕ∞} {G : Type u_10} [One G] [TopologicalSpace G] [ChartedSpace H' G] :
One (ContMDiffMap I I' N G n)
Equations
instance ContMDiffMap.instZero {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {E' : Type u_3} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H : Type u_4} [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} {H' : Type u_5} [TopologicalSpace H'] {I' : ModelWithCorners 𝕜 E' H'} {N : Type u_6} [TopologicalSpace N] [ChartedSpace H N] {n : WithTop ℕ∞} {G : Type u_10} [Zero G] [TopologicalSpace G] [ChartedSpace H' G] :
Zero (ContMDiffMap I I' N G n)
Equations
@[simp]
theorem ContMDiffMap.coe_one {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {E' : Type u_3} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H : Type u_4} [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} {H' : Type u_5} [TopologicalSpace H'] {I' : ModelWithCorners 𝕜 E' H'} {N : Type u_6} [TopologicalSpace N] [ChartedSpace H N] {n : WithTop ℕ∞} {G : Type u_10} [One G] [TopologicalSpace G] [ChartedSpace H' G] :
1 = 1
@[simp]
theorem ContMDiffMap.coe_zero {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {E' : Type u_3} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H : Type u_4} [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} {H' : Type u_5} [TopologicalSpace H'] {I' : ModelWithCorners 𝕜 E' H'} {N : Type u_6} [TopologicalSpace N] [ChartedSpace H N] {n : WithTop ℕ∞} {G : Type u_10} [Zero G] [TopologicalSpace G] [ChartedSpace H' G] :
0 = 0
instance ContMDiffMap.instNSMul {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {E' : Type u_3} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H : Type u_4} [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} {H' : Type u_5} [TopologicalSpace H'] {I' : ModelWithCorners 𝕜 E' H'} {N : Type u_6} [TopologicalSpace N] [ChartedSpace H N] {n : WithTop ℕ∞} {G : Type u_10} [AddMonoid G] [TopologicalSpace G] [ChartedSpace H' G] [ContMDiffAdd I' n G] :
SMul (ContMDiffMap I I' N G n)
Equations
instance ContMDiffMap.instPow {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {E' : Type u_3} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H : Type u_4} [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} {H' : Type u_5} [TopologicalSpace H'] {I' : ModelWithCorners 𝕜 E' H'} {N : Type u_6} [TopologicalSpace N] [ChartedSpace H N] {n : WithTop ℕ∞} {G : Type u_10} [Monoid G] [TopologicalSpace G] [ChartedSpace H' G] [ContMDiffMul I' n G] :
Pow (ContMDiffMap I I' N G n)
Equations
@[simp]
theorem ContMDiffMap.coe_pow {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {E' : Type u_3} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H : Type u_4} [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} {H' : Type u_5} [TopologicalSpace H'] {I' : ModelWithCorners 𝕜 E' H'} {N : Type u_6} [TopologicalSpace N] [ChartedSpace H N] {n : WithTop ℕ∞} {G : Type u_10} [Monoid G] [TopologicalSpace G] [ChartedSpace H' G] [ContMDiffMul I' n G] (f : ContMDiffMap I I' N G n) (n✝ : ) :
⇑(f ^ n✝) = f ^ n✝
@[simp]
theorem ContMDiffMap.coe_nsmul {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {E' : Type u_3} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H : Type u_4} [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} {H' : Type u_5} [TopologicalSpace H'] {I' : ModelWithCorners 𝕜 E' H'} {N : Type u_6} [TopologicalSpace N] [ChartedSpace H N] {n : WithTop ℕ∞} {G : Type u_10} [AddMonoid G] [TopologicalSpace G] [ChartedSpace H' G] [ContMDiffAdd I' n G] (f : ContMDiffMap I I' N G n) (n✝ : ) :
⇑(n✝ f) = n✝ f

Group structure #

In this section we show that C^n functions valued in a Lie group inherit a group structure under pointwise multiplication.

instance ContMDiffMap.semigroup {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {E' : Type u_3} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H : Type u_4} [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} {H' : Type u_5} [TopologicalSpace H'] {I' : ModelWithCorners 𝕜 E' H'} {N : Type u_6} [TopologicalSpace N] [ChartedSpace H N] {n : WithTop ℕ∞} {G : Type u_10} [Semigroup G] [TopologicalSpace G] [ChartedSpace H' G] [ContMDiffMul I' n G] :
Semigroup (ContMDiffMap I I' N G n)
Equations
instance ContMDiffMap.addSemigroup {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {E' : Type u_3} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H : Type u_4} [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} {H' : Type u_5} [TopologicalSpace H'] {I' : ModelWithCorners 𝕜 E' H'} {N : Type u_6} [TopologicalSpace N] [ChartedSpace H N] {n : WithTop ℕ∞} {G : Type u_10} [AddSemigroup G] [TopologicalSpace G] [ChartedSpace H' G] [ContMDiffAdd I' n G] :
Equations
instance ContMDiffMap.monoid {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {E' : Type u_3} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H : Type u_4} [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} {H' : Type u_5} [TopologicalSpace H'] {I' : ModelWithCorners 𝕜 E' H'} {N : Type u_6} [TopologicalSpace N] [ChartedSpace H N] {n : WithTop ℕ∞} {G : Type u_10} [Monoid G] [TopologicalSpace G] [ChartedSpace H' G] [ContMDiffMul I' n G] :
Monoid (ContMDiffMap I I' N G n)
Equations
instance ContMDiffMap.addMonoid {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {E' : Type u_3} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H : Type u_4} [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} {H' : Type u_5} [TopologicalSpace H'] {I' : ModelWithCorners 𝕜 E' H'} {N : Type u_6} [TopologicalSpace N] [ChartedSpace H N] {n : WithTop ℕ∞} {G : Type u_10} [AddMonoid G] [TopologicalSpace G] [ChartedSpace H' G] [ContMDiffAdd I' n G] :
AddMonoid (ContMDiffMap I I' N G n)
Equations
def ContMDiffMap.coeFnMonoidHom {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {E' : Type u_3} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H : Type u_4} [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} {H' : Type u_5} [TopologicalSpace H'] {I' : ModelWithCorners 𝕜 E' H'} {N : Type u_6} [TopologicalSpace N] [ChartedSpace H N] {n : WithTop ℕ∞} {G : Type u_10} [Monoid G] [TopologicalSpace G] [ChartedSpace H' G] [ContMDiffMul I' n G] :
ContMDiffMap I I' N G n →* NG

Coercion to a function as a MonoidHom. Similar to MonoidHom.coeFn.

Equations
def ContMDiffMap.coeFnAddMonoidHom {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {E' : Type u_3} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H : Type u_4} [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} {H' : Type u_5} [TopologicalSpace H'] {I' : ModelWithCorners 𝕜 E' H'} {N : Type u_6} [TopologicalSpace N] [ChartedSpace H N] {n : WithTop ℕ∞} {G : Type u_10} [AddMonoid G] [TopologicalSpace G] [ChartedSpace H' G] [ContMDiffAdd I' n G] :
ContMDiffMap I I' N G n →+ NG

Coercion to a function as an AddMonoidHom. Similar to AddMonoidHom.coeFn.

Equations
@[simp]
theorem ContMDiffMap.coeFnAddMonoidHom_apply {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {E' : Type u_3} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H : Type u_4} [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} {H' : Type u_5} [TopologicalSpace H'] {I' : ModelWithCorners 𝕜 E' H'} {N : Type u_6} [TopologicalSpace N] [ChartedSpace H N] {n : WithTop ℕ∞} {G : Type u_10} [AddMonoid G] [TopologicalSpace G] [ChartedSpace H' G] [ContMDiffAdd I' n G] (a✝ : ContMDiffMap I I' N G n) (a : N) :
coeFnAddMonoidHom a✝ a = a✝ a
@[simp]
theorem ContMDiffMap.coeFnMonoidHom_apply {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {E' : Type u_3} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H : Type u_4} [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} {H' : Type u_5} [TopologicalSpace H'] {I' : ModelWithCorners 𝕜 E' H'} {N : Type u_6} [TopologicalSpace N] [ChartedSpace H N] {n : WithTop ℕ∞} {G : Type u_10} [Monoid G] [TopologicalSpace G] [ChartedSpace H' G] [ContMDiffMul I' n G] (a✝ : ContMDiffMap I I' N G n) (a : N) :
coeFnMonoidHom a✝ a = a✝ a
def ContMDiffMap.compLeftMonoidHom {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {E' : Type u_3} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H : Type u_4} [TopologicalSpace H] (I : ModelWithCorners 𝕜 E H) {H' : Type u_5} [TopologicalSpace H'] {I' : ModelWithCorners 𝕜 E' H'} (N : Type u_6) [TopologicalSpace N] [ChartedSpace H N] {E'' : Type u_7} [NormedAddCommGroup E''] [NormedSpace 𝕜 E''] {H'' : Type u_8} [TopologicalSpace H''] {I'' : ModelWithCorners 𝕜 E'' H''} {n : WithTop ℕ∞} {G' : Type u_10} [Monoid G'] [TopologicalSpace G'] [ChartedSpace H' G'] [ContMDiffMul I' n G'] {G'' : Type u_11} [Monoid G''] [TopologicalSpace G''] [ChartedSpace H'' G''] [ContMDiffMul I'' n G''] (φ : G' →* G'') ( : ContMDiff I' I'' n φ) :
ContMDiffMap I I' N G' n →* ContMDiffMap I I'' N G'' n

For a manifold N and a C^n homomorphism φ between Lie groups G', G'', the 'left-composition-by-φ' group homomorphism from C^n⟮I, N; I', G'⟯ to C^n⟮I, N; I'', G''⟯.

Equations
def ContMDiffMap.compLeftAddMonoidHom {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {E' : Type u_3} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H : Type u_4} [TopologicalSpace H] (I : ModelWithCorners 𝕜 E H) {H' : Type u_5} [TopologicalSpace H'] {I' : ModelWithCorners 𝕜 E' H'} (N : Type u_6) [TopologicalSpace N] [ChartedSpace H N] {E'' : Type u_7} [NormedAddCommGroup E''] [NormedSpace 𝕜 E''] {H'' : Type u_8} [TopologicalSpace H''] {I'' : ModelWithCorners 𝕜 E'' H''} {n : WithTop ℕ∞} {G' : Type u_10} [AddMonoid G'] [TopologicalSpace G'] [ChartedSpace H' G'] [ContMDiffAdd I' n G'] {G'' : Type u_11} [AddMonoid G''] [TopologicalSpace G''] [ChartedSpace H'' G''] [ContMDiffAdd I'' n G''] (φ : G' →+ G'') ( : ContMDiff I' I'' n φ) :
ContMDiffMap I I' N G' n →+ ContMDiffMap I I'' N G'' n

For a manifold N and a C^n homomorphism φ between additive Lie groups G', G'', the 'left-composition-by-φ' group homomorphism from C^n⟮I, N; I', G'⟯ to C^n⟮I, N; I'', G''⟯.

Equations
def ContMDiffMap.restrictMonoidHom {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {E' : Type u_3} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H : Type u_4} [TopologicalSpace H] (I : ModelWithCorners 𝕜 E H) {H' : Type u_5} [TopologicalSpace H'] (I' : ModelWithCorners 𝕜 E' H') {N : Type u_6} [TopologicalSpace N] [ChartedSpace H N] {n : WithTop ℕ∞} (G : Type u_10) [Monoid G] [TopologicalSpace G] [ChartedSpace H' G] [ContMDiffMul I' n G] {U V : TopologicalSpace.Opens N} (h : U V) :
ContMDiffMap I I' (↥V) G n →* ContMDiffMap I I' (↥U) G n

For a Lie group G and open sets U ⊆ V in N, the 'restriction' group homomorphism from C^n⟮I, V; I', G⟯ to C^n⟮I, U; I', G⟯.

Equations
def ContMDiffMap.restrictAddMonoidHom {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {E' : Type u_3} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H : Type u_4} [TopologicalSpace H] (I : ModelWithCorners 𝕜 E H) {H' : Type u_5} [TopologicalSpace H'] (I' : ModelWithCorners 𝕜 E' H') {N : Type u_6} [TopologicalSpace N] [ChartedSpace H N] {n : WithTop ℕ∞} (G : Type u_10) [AddMonoid G] [TopologicalSpace G] [ChartedSpace H' G] [ContMDiffAdd I' n G] {U V : TopologicalSpace.Opens N} (h : U V) :
ContMDiffMap I I' (↥V) G n →+ ContMDiffMap I I' (↥U) G n

For an additive Lie group G and open sets U ⊆ V in N, the 'restriction' group homomorphism from C^n⟮I, V; I', G⟯ to C^n⟮I, U; I', G⟯.

Equations
instance ContMDiffMap.commMonoid {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {E' : Type u_3} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H : Type u_4} [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} {H' : Type u_5} [TopologicalSpace H'] {I' : ModelWithCorners 𝕜 E' H'} {N : Type u_6} [TopologicalSpace N] [ChartedSpace H N] {n : WithTop ℕ∞} {G : Type u_10} [CommMonoid G] [TopologicalSpace G] [ChartedSpace H' G] [ContMDiffMul I' n G] :
Equations
instance ContMDiffMap.addCommMonoid {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {E' : Type u_3} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H : Type u_4} [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} {H' : Type u_5} [TopologicalSpace H'] {I' : ModelWithCorners 𝕜 E' H'} {N : Type u_6} [TopologicalSpace N] [ChartedSpace H N] {n : WithTop ℕ∞} {G : Type u_10} [AddCommMonoid G] [TopologicalSpace G] [ChartedSpace H' G] [ContMDiffAdd I' n G] :
Equations
instance ContMDiffMap.group {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {E' : Type u_3} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H : Type u_4} [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} {H' : Type u_5} [TopologicalSpace H'] {I' : ModelWithCorners 𝕜 E' H'} {N : Type u_6} [TopologicalSpace N] [ChartedSpace H N] {n : WithTop ℕ∞} {G : Type u_10} [Group G] [TopologicalSpace G] [ChartedSpace H' G] [LieGroup I' n G] :
Group (ContMDiffMap I I' N G n)
Equations
  • One or more equations did not get rendered due to their size.
instance ContMDiffMap.addGroup {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {E' : Type u_3} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H : Type u_4} [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} {H' : Type u_5} [TopologicalSpace H'] {I' : ModelWithCorners 𝕜 E' H'} {N : Type u_6} [TopologicalSpace N] [ChartedSpace H N] {n : WithTop ℕ∞} {G : Type u_10} [AddGroup G] [TopologicalSpace G] [ChartedSpace H' G] [LieAddGroup I' n G] :
AddGroup (ContMDiffMap I I' N G n)
Equations
  • One or more equations did not get rendered due to their size.
@[simp]
theorem ContMDiffMap.coe_inv {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {E' : Type u_3} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H : Type u_4} [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} {H' : Type u_5} [TopologicalSpace H'] {I' : ModelWithCorners 𝕜 E' H'} {N : Type u_6} [TopologicalSpace N] [ChartedSpace H N] {n : WithTop ℕ∞} {G : Type u_10} [Group G] [TopologicalSpace G] [ChartedSpace H' G] [LieGroup I' n G] (f : ContMDiffMap I I' N G n) :
f⁻¹ = (⇑f)⁻¹
@[simp]
theorem ContMDiffMap.coe_neg {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {E' : Type u_3} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H : Type u_4} [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} {H' : Type u_5} [TopologicalSpace H'] {I' : ModelWithCorners 𝕜 E' H'} {N : Type u_6} [TopologicalSpace N] [ChartedSpace H N] {n : WithTop ℕ∞} {G : Type u_10} [AddGroup G] [TopologicalSpace G] [ChartedSpace H' G] [LieAddGroup I' n G] (f : ContMDiffMap I I' N G n) :
⇑(-f) = -f
@[simp]
theorem ContMDiffMap.coe_div {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {E' : Type u_3} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H : Type u_4} [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} {H' : Type u_5} [TopologicalSpace H'] {I' : ModelWithCorners 𝕜 E' H'} {N : Type u_6} [TopologicalSpace N] [ChartedSpace H N] {n : WithTop ℕ∞} {G : Type u_10} [Group G] [TopologicalSpace G] [ChartedSpace H' G] [LieGroup I' n G] (f g : ContMDiffMap I I' N G n) :
⇑(f / g) = f / g
@[simp]
theorem ContMDiffMap.coe_sub {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {E' : Type u_3} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H : Type u_4} [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} {H' : Type u_5} [TopologicalSpace H'] {I' : ModelWithCorners 𝕜 E' H'} {N : Type u_6} [TopologicalSpace N] [ChartedSpace H N] {n : WithTop ℕ∞} {G : Type u_10} [AddGroup G] [TopologicalSpace G] [ChartedSpace H' G] [LieAddGroup I' n G] (f g : ContMDiffMap I I' N G n) :
⇑(f - g) = f - g
instance ContMDiffMap.commGroup {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {E' : Type u_3} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H : Type u_4} [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} {H' : Type u_5} [TopologicalSpace H'] {I' : ModelWithCorners 𝕜 E' H'} {N : Type u_6} [TopologicalSpace N] [ChartedSpace H N] {n : WithTop ℕ∞} {G : Type u_10} [CommGroup G] [TopologicalSpace G] [ChartedSpace H' G] [LieGroup I' n G] :
CommGroup (ContMDiffMap I I' N G n)
Equations
instance ContMDiffMap.addCommGroup {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {E' : Type u_3} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H : Type u_4} [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} {H' : Type u_5} [TopologicalSpace H'] {I' : ModelWithCorners 𝕜 E' H'} {N : Type u_6} [TopologicalSpace N] [ChartedSpace H N] {n : WithTop ℕ∞} {G : Type u_10} [AddCommGroup G] [TopologicalSpace G] [ChartedSpace H' G] [LieAddGroup I' n G] :
Equations

Ring structure #

In this section we show that C^n functions valued in a C^n ring R inherit a ring structure under pointwise multiplication.

instance ContMDiffMap.semiring {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {E' : Type u_3} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H : Type u_4} [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} {H' : Type u_5} [TopologicalSpace H'] {I' : ModelWithCorners 𝕜 E' H'} {N : Type u_6} [TopologicalSpace N] [ChartedSpace H N] {n : WithTop ℕ∞} {R : Type u_10} [Semiring R] [TopologicalSpace R] [ChartedSpace H' R] [ContMDiffRing I' n R] :
Semiring (ContMDiffMap I I' N R n)
Equations
  • One or more equations did not get rendered due to their size.
instance ContMDiffMap.ring {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {E' : Type u_3} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H : Type u_4} [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} {H' : Type u_5} [TopologicalSpace H'] {I' : ModelWithCorners 𝕜 E' H'} {N : Type u_6} [TopologicalSpace N] [ChartedSpace H N] {n : WithTop ℕ∞} {R : Type u_10} [Ring R] [TopologicalSpace R] [ChartedSpace H' R] [ContMDiffRing I' n R] :
Ring (ContMDiffMap I I' N R n)
Equations
  • One or more equations did not get rendered due to their size.
instance ContMDiffMap.commRing {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {E' : Type u_3} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H : Type u_4} [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} {H' : Type u_5} [TopologicalSpace H'] {I' : ModelWithCorners 𝕜 E' H'} {N : Type u_6} [TopologicalSpace N] [ChartedSpace H N] {n : WithTop ℕ∞} {R : Type u_10} [CommRing R] [TopologicalSpace R] [ChartedSpace H' R] [ContMDiffRing I' n R] :
CommRing (ContMDiffMap I I' N R n)
Equations
  • One or more equations did not get rendered due to their size.
def ContMDiffMap.compLeftRingHom {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {E' : Type u_3} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H : Type u_4} [TopologicalSpace H] (I : ModelWithCorners 𝕜 E H) {H' : Type u_5} [TopologicalSpace H'] {I' : ModelWithCorners 𝕜 E' H'} (N : Type u_6) [TopologicalSpace N] [ChartedSpace H N] {E'' : Type u_7} [NormedAddCommGroup E''] [NormedSpace 𝕜 E''] {H'' : Type u_8} [TopologicalSpace H''] {I'' : ModelWithCorners 𝕜 E'' H''} {n : WithTop ℕ∞} {R' : Type u_10} [Ring R'] [TopologicalSpace R'] [ChartedSpace H' R'] [ContMDiffRing I' n R'] {R'' : Type u_11} [Ring R''] [TopologicalSpace R''] [ChartedSpace H'' R''] [ContMDiffRing I'' n R''] (φ : R' →+* R'') ( : ContMDiff I' I'' n φ) :
ContMDiffMap I I' N R' n →+* ContMDiffMap I I'' N R'' n

For a manifold N and a C^n homomorphism φ between C^n rings R', R'', the 'left-composition-by-φ' ring homomorphism from C^n⟮I, N; I', R'⟯ to C^n⟮I, N; I'', R''⟯.

Equations
def ContMDiffMap.restrictRingHom {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {E' : Type u_3} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H : Type u_4} [TopologicalSpace H] (I : ModelWithCorners 𝕜 E H) {H' : Type u_5} [TopologicalSpace H'] (I' : ModelWithCorners 𝕜 E' H') {N : Type u_6} [TopologicalSpace N] [ChartedSpace H N] {n : WithTop ℕ∞} (R : Type u_10) [Ring R] [TopologicalSpace R] [ChartedSpace H' R] [ContMDiffRing I' n R] {U V : TopologicalSpace.Opens N} (h : U V) :
ContMDiffMap I I' (↥V) R n →+* ContMDiffMap I I' (↥U) R n

For a "C^n ring" R and open sets U ⊆ V in N, the "restriction" ring homomorphism from C^n⟮I, V; I', R⟯ to C^n⟮I, U; I', R⟯.

Equations
def ContMDiffMap.coeFnRingHom {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {E' : Type u_3} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H : Type u_4} [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} {H' : Type u_5} [TopologicalSpace H'] {I' : ModelWithCorners 𝕜 E' H'} {N : Type u_6} [TopologicalSpace N] [ChartedSpace H N] {n : WithTop ℕ∞} {R : Type u_10} [CommRing R] [TopologicalSpace R] [ChartedSpace H' R] [ContMDiffRing I' n R] :
ContMDiffMap I I' N R n →+* NR

Coercion to a function as a RingHom.

Equations
@[simp]
theorem ContMDiffMap.coeFnRingHom_apply {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {E' : Type u_3} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H : Type u_4} [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} {H' : Type u_5} [TopologicalSpace H'] {I' : ModelWithCorners 𝕜 E' H'} {N : Type u_6} [TopologicalSpace N] [ChartedSpace H N] {n : WithTop ℕ∞} {R : Type u_10} [CommRing R] [TopologicalSpace R] [ChartedSpace H' R] [ContMDiffRing I' n R] (a✝ : ContMDiffMap I I' N R n) (a : N) :
coeFnRingHom a✝ a = a✝ a
def ContMDiffMap.evalRingHom {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {E' : Type u_3} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H : Type u_4} [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} {H' : Type u_5} [TopologicalSpace H'] {I' : ModelWithCorners 𝕜 E' H'} {N : Type u_6} [TopologicalSpace N] [ChartedSpace H N] {n : WithTop ℕ∞} {R : Type u_10} [CommRing R] [TopologicalSpace R] [ChartedSpace H' R] [ContMDiffRing I' n R] (m : N) :
ContMDiffMap I I' N R n →+* R

Function.eval as a RingHom on the ring of C^n functions.

Equations

Semimodule structure #

In this section we show that C^n functions valued in a vector space M over a normed field 𝕜 inherit a vector space structure.

instance ContMDiffMap.instSMul {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {H : Type u_4} [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} {N : Type u_6} [TopologicalSpace N] [ChartedSpace H N] {n : WithTop ℕ∞} {V : Type u_10} [NormedAddCommGroup V] [NormedSpace 𝕜 V] :
SMul 𝕜 (ContMDiffMap I (modelWithCornersSelf 𝕜 V) N V n)
Equations
@[simp]
theorem ContMDiffMap.coe_smul {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {H : Type u_4} [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} {N : Type u_6} [TopologicalSpace N] [ChartedSpace H N] {n : WithTop ℕ∞} {V : Type u_10} [NormedAddCommGroup V] [NormedSpace 𝕜 V] (r : 𝕜) (f : ContMDiffMap I (modelWithCornersSelf 𝕜 V) N V n) :
⇑(r f) = r f
@[simp]
theorem ContMDiffMap.smul_comp {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {H : Type u_4} [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} {N : Type u_6} [TopologicalSpace N] [ChartedSpace H N] {E'' : Type u_7} [NormedAddCommGroup E''] [NormedSpace 𝕜 E''] {H'' : Type u_8} [TopologicalSpace H''] {I'' : ModelWithCorners 𝕜 E'' H''} {N' : Type u_9} [TopologicalSpace N'] [ChartedSpace H'' N'] {n : WithTop ℕ∞} {V : Type u_10} [NormedAddCommGroup V] [NormedSpace 𝕜 V] (r : 𝕜) (g : ContMDiffMap I'' (modelWithCornersSelf 𝕜 V) N' V n) (h : ContMDiffMap I I'' N N' n) :
(r g).comp h = r g.comp h
def ContMDiffMap.coeFnLinearMap {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {H : Type u_4} [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} {N : Type u_6} [TopologicalSpace N] [ChartedSpace H N] {n : WithTop ℕ∞} {V : Type u_10} [NormedAddCommGroup V] [NormedSpace 𝕜 V] :
ContMDiffMap I (modelWithCornersSelf 𝕜 V) N V n →ₗ[𝕜] NV

Coercion to a function as a LinearMap.

Equations
@[simp]
theorem ContMDiffMap.coeFnLinearMap_apply {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {H : Type u_4} [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} {N : Type u_6} [TopologicalSpace N] [ChartedSpace H N] {n : WithTop ℕ∞} {V : Type u_10} [NormedAddCommGroup V] [NormedSpace 𝕜 V] (a✝ : ContMDiffMap I (modelWithCornersSelf 𝕜 V) N V n) (a : N) :
coeFnLinearMap a✝ a = a✝ a

Algebra structure #

In this section we show that C^n functions valued in a normed algebra A over a normed field 𝕜 inherit an algebra structure.

def ContMDiffMap.C {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {H : Type u_4} [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} {N : Type u_6} [TopologicalSpace N] [ChartedSpace H N] {n : WithTop ℕ∞} {A : Type u_10} [NormedRing A] [NormedAlgebra 𝕜 A] [ContMDiffRing (modelWithCornersSelf 𝕜 A) n A] :

C^n constant functions as a RingHom.

Equations
instance ContMDiffMap.algebra {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {H : Type u_4} [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} {N : Type u_6} [TopologicalSpace N] [ChartedSpace H N] {n : WithTop ℕ∞} {A : Type u_10} [NormedRing A] [NormedAlgebra 𝕜 A] [ContMDiffRing (modelWithCornersSelf 𝕜 A) n A] :
Algebra 𝕜 (ContMDiffMap I (modelWithCornersSelf 𝕜 A) N A n)
Equations
def ContMDiffMap.coeFnAlgHom {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {H : Type u_4} [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} {N : Type u_6} [TopologicalSpace N] [ChartedSpace H N] {n : WithTop ℕ∞} {A : Type u_10} [NormedRing A] [NormedAlgebra 𝕜 A] [ContMDiffRing (modelWithCornersSelf 𝕜 A) n A] :
ContMDiffMap I (modelWithCornersSelf 𝕜 A) N A n →ₐ[𝕜] NA

Coercion to a function as an AlgHom.

Equations
@[simp]
theorem ContMDiffMap.coeFnAlgHom_apply {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {H : Type u_4} [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} {N : Type u_6} [TopologicalSpace N] [ChartedSpace H N] {n : WithTop ℕ∞} {A : Type u_10} [NormedRing A] [NormedAlgebra 𝕜 A] [ContMDiffRing (modelWithCornersSelf 𝕜 A) n A] (a✝ : ContMDiffMap I (modelWithCornersSelf 𝕜 A) N A n) (a : N) :
coeFnAlgHom a✝ a = a✝ a

Structure as module over scalar functions #

If V is a module over 𝕜, then we show that the space of C^n functions from N to V is naturally a vector space over the ring of C^n functions from N to 𝕜.

instance ContMDiffMap.instSMul' {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {H : Type u_4} [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} {N : Type u_6} [TopologicalSpace N] [ChartedSpace H N] {n : WithTop ℕ∞} {V : Type u_10} [NormedAddCommGroup V] [NormedSpace 𝕜 V] :
SMul (ContMDiffMap I (modelWithCornersSelf 𝕜 𝕜) N 𝕜 n) (ContMDiffMap I (modelWithCornersSelf 𝕜 V) N V n)

C^n scalar-valued functions act by left-multiplication on C^n functions.

Equations
@[simp]
theorem ContMDiffMap.smul_comp' {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {H : Type u_4} [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} {N : Type u_6} [TopologicalSpace N] [ChartedSpace H N] {E'' : Type u_7} [NormedAddCommGroup E''] [NormedSpace 𝕜 E''] {H'' : Type u_8} [TopologicalSpace H''] {I'' : ModelWithCorners 𝕜 E'' H''} {N' : Type u_9} [TopologicalSpace N'] [ChartedSpace H'' N'] {n : WithTop ℕ∞} {V : Type u_10} [NormedAddCommGroup V] [NormedSpace 𝕜 V] (f : ContMDiffMap I'' (modelWithCornersSelf 𝕜 𝕜) N' 𝕜 n) (g : ContMDiffMap I'' (modelWithCornersSelf 𝕜 V) N' V n) (h : ContMDiffMap I I'' N N' n) :
(f g).comp h = f.comp h g.comp h

The left multiplication with a C^n scalar function commutes with composition.

instance ContMDiffMap.module' {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {H : Type u_4} [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} {N : Type u_6} [TopologicalSpace N] [ChartedSpace H N] {n : WithTop ℕ∞} {V : Type u_10} [NormedAddCommGroup V] [NormedSpace 𝕜 V] :
Module (ContMDiffMap I (modelWithCornersSelf 𝕜 𝕜) N 𝕜 n) (ContMDiffMap I (modelWithCornersSelf 𝕜 V) N V n)

The space of C^n functions with values in a space V is a module over the space of C^n functions with values in 𝕜.

Equations
  • One or more equations did not get rendered due to their size.